Systematic Review for Effectiveness of Hyaluronic Acid in the Treatment of Severe Degenerative Joint Disease (DJD) of the Knee
Systematic Review for Effectiveness of Hyaluronic Acid in the Treatment of Severe Degenerative Joint Disease (DJD) of the Knee

Technology Assessment Report

Project ID: DJDTO913

11/26/2014

RAND Southern California Evidence-Based Practice Center

Sydne J. Newberry, Ph.D.
John D. Fitzgerald, M.D., Ph.D
Margaret A. Maglione, M.P.P.
Claire O’Hanlon, M.P.P.
Marika Booth, M.S.
Aneesa Motala, B.A.
Martha Timmer, M.A.
Roberta Shanman, M.L.S.
Paul G. Shekelle, M.D., Ph.D.

This draft technology assessment is distributed solely for the purpose of public and peer review and/or discussion at the MedCAC meeting. It has not been otherwise disseminated by AHRQ. It does not represent and should not be construed to represent an AHRQ determination or policy.

This report is based on research conducted by the RAND Southern California Evidence-based Practice Center under contract to the Agency for Healthcare
Research and Quality (AHRQ), Rockville, MD (HHSA290201200006I). The
findings and conclusions in this document are those of the authors, who are
responsible for its contents. The findings and conclusions do not necessarily
represent the views of AHRQ. Therefore, no statement in this report should be
construed as an official position of the Agency for Healthcare Research and
Quality or of the U.S. Department of Health and Human Services.

None of the investigators has any affiliations or financial involvement related to
the material presented in this report.
Acknowledgments
The authors would like to thank Sean Rubin and Patricia Smith for their assistance on the project.

Peer Reviewers
To Be Added for Final Version
Systematic Review of Effectiveness of Hyaluronic Acid in the Treatment of Severe Degenerative Joint Disease (DJD) of the Knee

Structured Abstract

Purpose. AHRQ’s Office of Technology Assessment and its partner, the Centers for Medicare and Medicaid Services (CMS), requested a review of the evidence that intra-articular injections of hyaluronic acid (HA) in individuals with degenerative joint disease of the knee improve function and quality of life (QoL) and that they delay or prevent the need for knee replacement (KR), specifically for individuals age 65 and over.

Data Sources. Searches of Medline, Cochrane Library, Web of Science, Clinicaltrials.gov, the FDA Premarket Approval database, and unpublished documents identified in grey literature searches or provided by manufacturers.

Review Methods. Randomized controlled trials (RCTs) or observational studies that reported on HA administration and delay or avoidance of KR; double-blind placebo controlled RCTs that reported on functional outcomes or QoL; RCTs, case reports, and large cohort studies and case series that assessed the safety of HA; and unpublished data identified through grey literature searches or provided by manufacturers for efficacy or safety outcomes, in human subjects of mean age 65 or older, were considered for inclusion, as were recent comprehensive systematic reviews that reported on the effects of HA injections on knee pain as an outcome. A standardized protocol with predefined criteria was used to extract details on study design, interventions, outcomes, and study quality.

Results. Only one RCT reported on delay or avoidance of KR as a pre-specified outcome of interest and found a non-statistically significantly longer delay of KR compared with placebo; two RCTs reported KR only as a secondary outcome; and 13 observational studies reported on KR as an outcome in HA-treated participants.

Eighteen RCTs that enrolled participants of average age 65 or older reported on functional outcomes of intra-articular HA injection: pooled analysis of ten sham-injection placebo-controlled, assessor-blinded trials showed a standardized mean difference of -0.23 (95% CI -0.34, -0.02) significantly favoring HA at 6 months’ follow-up (but not meeting the prespecified minimum clinically important difference of -0.37). Durability of effect could not be assessed because of the short duration of most studies. Too few head-to-head trials were available to assess superiority of one product over another. Three RCTs that compared changes in QoL/HRQoL between HA- and placebo-treated participants reported no differences between active treatment and placebo. A large, good quality systematic review that assessed the effects of HA on pain and function (pooling 71 and 52 RCTs respectively) showed a significant and clinically important effect of HA on both outcomes among adults of all ages, but a subgroup analysis that included only the larger double-blind placebo-controlled studies reduced the average effect of HA to less than the prespecified minimum clinically important difference. Stratified analysis that compared the pooled effect size of 54 sham-controlled RCTs with that of 18 studies without sham controls found that the sham-controlled studies significantly reduced...
pain with an average effect just short of clinical importance. Studies of intra-articular HA reported few serious adverse events, with no statistically significant difference in the rates of serious or non-serious adverse events between HA- and placebo-treated groups.

Conclusions. Trials enrolling older participants show a small, statistically significant effect of HA on function, but the average effects do not meet the minimum clinically important difference; however no studies limited participation to those 65 years or older. No conclusions can be drawn from the available literature on delay or avoidance of KR through the use of HA. Studies, preferably randomized controlled trials, that can compare large numbers of treated and untreated individuals are needed to answer this question.
Contents

Executive Summary ... ES-1
 Background .. ES-1
 Methods ... ES-4
 Results .. ES-6
 Discussion .. ES-12
 Findings in Relation to What is Already Known .. ES-13
 Applicability .. ES-14
 Implications for Clinical and Policy Decision Making .. ES-14
 Limitations of the Comparative Effectiveness Review Process ... ES-15
 Limitations of the Evidence Base .. ES-15
 Specific to the outcome of function, only four placebo-controlled trials reported the actual percentage of participants who experienced global improvement, and only one trial measured knee replacement as a primary outcome .. ES-15
 Research Gaps .. ES-15
 Conclusions .. ES-16

Introduction .. 1
 Background ... 1
 Scope and Key Questions ... 5
 Organization of this report .. 7

Methods ... 8
 Criteria for Inclusion/Exclusion of Studies in the Review ... 8
 Literature Search Strategies for Identification of Relevant Studies to Answer the Key Questions ... 9
 Data Abstraction and Data Management .. 10
 Assessment of Methodological Quality of Individual Studies .. 10
 Data Synthesis .. 10
 Peer Review and Public Commentary .. 13

Results .. 14
 Introduction .. 14
 Results of Literature Searches .. 14
 Delay or avoidance of knee replacement surgery .. 17
 Intra-articular injection of hyaluronic acid and measures of function .. 31
 Intra-articular injection of hyaluronic acid and quality of life .. 53
 Intra-articular injection of hyaluronic acid and pain ... 54
 Intra-articular injection of hyaluronic acid and adverse events ... 56

Discussion ... 62
 Key Findings and Strength of Evidence .. 62
 Findings in Relation to What is Already Known .. 64
 Applicability .. 66
 Implications for Clinical and Policy Decision Making .. 66
 Limitations of the Comparative Effectiveness Review Process .. 66
 Limitations of the Evidence Base .. 66
 Research Gaps .. 67
 Conclusions .. 67
References .. 68
Abbreviations / Acronyms .. 76

Tables
Table A. Strength of Evidence .. ES-9
Table 1. Hyaluronic Acid Devices Approved for Use in the United States 3
Table 2. Strength of Evidence .. 16
Table 3. Case Series Reporting on Knee Replacement as an Outcome 20
Table 4. Cohort Studies Reporting on Total Knee Replacement as an Outcome 24
Table 5. Risk of Bias Assessment for Observational Studies Included in Assessment of total
Knee Replacement* .. 30
Table 6. Summary of studies reporting functional outcomes ... 34
Table 7. AMSTAR Assessment for Systematic Reviews of HA and Pain* 55
Table 8. Pooled adverse events reported in trials, according to category 57
Table 9. Adverse events described in case reports ... 59
Table 10. McHarm Table ... 60

Figures
Figure A. Analytic framework of the effects of hyaluronic acid (HA) (vs. placebo or active
comparator) on function, pain, adverse events, and delay/avoidance of total knee replacement
(arthroplasty) .. ES-4
Figure B. Literature Flow Diagram ... ES-8
Figure 1. Analytic Framework ... 6
Figure 2. Literature Flow Diagram .. 15
Figure 3. Forest Plot for Comparisons of the Effect of Hyaluronic Acid Treatment with Placebo
on function (WOMAC, Lequesne, or KOOS) at 26 Weeks Follow-up* 51
Figure 4. Risk of Bias Assessment on Randomized Controlled Trials .. 52

Appendices
Appendix A: Search Strategy
Appendix B: List of Excluded Studies
Appendix C: Evidence Tables
Appendix D. Data Abstraction Tools
Appendix E. Non-English Language Article Abstracts Reviewed
Appendix F. Non-US Approved HA Devices
Appendix G. Strength of Evidence Assessment Required Domains: Definitions and Scores
Appendix H. Tools to Measure Function
Executive Summary

Background

Osteoarthritis (degenerative joint disease [DJD]) of the knee is a condition characterized by the progressive destruction of the cartilage that lines the knee joint, and when severe, results in bone-on-bone friction and accompanying pain, immobility, and reduction in the ability to complete activities of daily living (ADL).

In 2005, the estimated prevalence of osteoarthritis among adults in the United States, the number of individuals who had ever been told by a doctor that they had the condition, was approximately 27 million cases.\(^1\) Prevalence rates vary by the joint involved and the method of ascertainment (clinical vs. radiographic): symptomatically, the knee is the most frequently affected joint.\(^2\) The prevalence of osteoarthritis of the knee is increasing rapidly because of shifting population demographics: The primary risk factors for osteoarthritis of the knee are aging, obesity, prior injury, repetitive use,\(^3\) and female gender. The prevalence of symptomatic knee osteoarthritis may reach 50 percent by the age of 75. From 2002 to 2012, the number of individuals in the US with a total knee replacement doubled from some 2 million to approximately 4 million).\(^4\) The increase in obesity has translated not only into an increase in incidence of osteoarthritis of the knee but also into a younger age of onset and need for treatment; as a result, by the time individuals with osteoarthritis of the knee reach the age of Medicare eligibility, the length of time they have had the condition has grown, their cases are more advanced,\(^5\) and the risk that surgery will be needed has increased. Thus, the aging of the baby boomer population, along with the increased incidence and prevalence of obesity have increased the risk for this condition, all representing an increasing strain on Medicare resources.

Condition and Therapeutic Strategies

Diagnosis. Osteoarthritis of the knee is usually diagnosed clinically based on pain. Radiographic evidence of osteoarthritis may precede symptomatic osteoarthritis and unfortunately correlates weakly with symptom severity. Radiologic severity can be estimated and expressed using the Kellgren and Lawrence criteria; however, a number of versions of the criteria exist: At low cutoff scores, correlation with symptoms is poor,\(^6\) whereas at higher cutoff scores, agreement tends to be higher. The primary impact of these different versions of the criteria may be the challenge that they create in trying to assess, compare, and pool the findings of research studies:\(^6\) Some longitudinal studies have even used different criteria at different time points within the same study. Because of the variation in scores for radiographic finding under various versions of the criteria (especially for individuals with less-advanced disease), stratification is important.

Some evidence suggests that among individuals with knee pain, MRI demonstrates physical signs of osteoarthritic changes in the knee before they are visible radiographically.\(^7\) However, the sensitivity and specificity of MRI in diagnosis and monitoring of progression have not yet been definitively demonstrated and is not used in routine clinical practice.

Treatment. The goals of treatment for osteoarthritis of the knee include relief of pain and inflammation, slowing of progression, and improvement in or maintenance of mobility and function (ADLs and health-related quality of life [HRQoL]). Treatment options for osteoarthritis
of the knee include oral or topical analgesics (non-steroidal anti-inflammatories, acetaminophen), injected corticosteroids, physical therapy and exercise (both to strengthen muscles that support the affected joints and to increase range of motion), weight loss, partial or total arthroplasty (an alternative term for knee replacement) for advanced cases, and more recent therapies such as viscosupplementation, which involves local injections of the natural joint lubricant, hyaluronic acid, among other treatments.8

Hyaluronic acid (hyaluronate or hyaluronan) is a high molecular weight glycosaminoglycan synthesized in plasma membranes of connective tissues and secreted into the synovial fluid surrounding joints, where it forms part of the extracellular matrix.9 Progressive osteoarthritis of the knee includes loss of the cells responsible for synthesizing the substance, resulting in lower-viscosity endogenous hyaluronate. A large number of trials have examined the efficacy and safety of supplemental hyaluronic acid injections (classified by the United States Food and Drug Administration as a medical device), with varying efficacy outcomes. Systematic reviews have attempted to resolve these conflicting findings. Some reviews have reported positive outcomes10, 11 whereas some have reported mixed effects12, 13 or no effect.14 A 2010 update of an earlier systematic review actually found a decrease in the effect size for hyaluronic acid on knee osteoarthritis from the previous review.15 The discrepancies in outcomes are likely due to study heterogeneity both within and among reviews with respect to population characteristics, intervention modalities, treatment and followup duration, and the actual outcomes measured (e.g., pain, functionality, HRQoL), as well as the measures employed. Heterogeneity may also be attributable to how efficacy is expressed, i.e., the proportion of each treatment group that responds positively to treatment, vs. the mean change in that efficacy measure from baseline in the active treatment group vs. the comparison group.

In the 2012 update to their 2000 guidelines for the treatment of osteoarthritis of the knee, hip, and hand, the American College of Rheumatology conditionally recommended hyaluronic acid injections for patients who had an inadequate response to initial therapy.8 The 2013 American Academy of Orthopedic Surgeons guidelines for the treatment of osteoarthritis of the knee recommend against the use of hyaluronic acid to treat patients with symptomatic conditions.16

Assessment of Outcomes of Treatment

A number of assessment tools are used to assess pain, quality of life, and physical functioning in patients with osteoarthritis of the knee. These tools can be divided into those specifically developed for knee osteoarthritis and those that are used for a variety of conditions.

Tools specifically developed and validated to assess pain and functioning associated with osteoarthritis of the knee as well as treatment outcomes include the Western Ontario-Macmaster (WOMAC17), the Lequesne Index18, the Knee Injury and Osteoarthritis Outcomes Score (KOOS19), and the Animated Activity Questionnaire.20 In 2004, the Osteoarthritis Research Society International (OARSI) developed a consensus set of guidelines to assess the outcomes of research trials on products intended to treat osteoarthritis; and under the International League of Rheumatologists, OMERACT (Outcome Measures in Rheumatology) has developed guidelines on outcome measures.21

General tools that have been adapted for use in assessing osteoarthritis of the knee include the Short form (SF)-36, developed at RAND for the Medical Outcomes Study22 and the Activities of Daily Living (ADLs) and IADLs assessment.
The Kinemax Outcomes Group has used a combination of the WOMAC, the SF-36, and a series of questions addressing demographic characteristics to predict patient outcomes of total knee arthroplasty.23

The Aims of the Current Report. The scope of work for this task order includes an assessment of the evidence that hyaluronic acid injections prevent or delay the need for arthroplasty among individuals 65 and over. CMS currently covers hyaluronic acid injections for elderly Medicare recipients under certain conditions.24 If hyaluronic acid is effective, it is postulated that it might effectively prevent or delay the need for life-disrupting surgery and rehabilitation by relieving pain and improving function with minimal inconvenience or adverse effects; however, if the treatment delays arthroplasty but fails to halt progressive degeneration, patients could potentially experience worse outcomes, although thus far, evidence for such outcomes has been weak. In addition to assessing the evidence for a role of HA in delaying or preventing the need for KR, this report aims to assess the evidence to date on the efficacy of intra-articular injections of HA with respect to the outcomes of function, ADLs/IADS, quality of life, and pain and on the safety of HA when used as indicated.

Scope and Key Questions

The key questions were provided by the CMS Coverage Analysis Group. They are presented here along with a description of the participants, interventions, comparators, outcomes, and timeframes (PICOTs) of interest, which defined the inclusion and exclusion criteria of the review. An analytic framework that shows the interrelationships among the presenting problems, the interventions and the outcomes of interest appears below.

Key question 1. Does intra-articular injection of hyaluronic acid eliminate the need for knee replacement surgery? Is this outcome affected by the type of hyaluronic acid, the type of presentation, severity at study entry, or age at study entry?

Key Question 2. Does intra-articular injection of hyaluronic acid significantly postpone the need for knee replacement surgery?

Key Question 3. Does intra-articular injection of hyaluronic acid improve the ability to successfully perform activities of daily living (ADLs) or instrumental activities of daily living (IADLs)?

Key Question 4. Does intra-articular injection of hyaluronic acid improve quality of life? PICOTs for KQ1 through 4 are the same with the exception of outcomes.

Criteria for Inclusion/Exclusion of Studies in the Review We sought randomized placebo-controlled trials, head-to-head trials, or quasi-randomized trials that reported results for individuals whose average age was 65 or older and were powered to see a clinically important difference; that assessed the effects of intra-articular HA; and that reported on any of the following outcomes: function, quality of life, delay of total knee replacement, and prevention of the need for total knee replacement (as well as factors that might affect these outcomes, such as age, disease severity, or comorbidities). If no RCTs were identified that reported the outcomes of interest, we included observational studies that assessed the outcome in question. Studies were
included that enrolled individuals with other comorbidities and that enrolled community dwelling or institutionalized participants. Acceptable comparators included placebo (sham injection) or other HA devices. Followup times of 4 weeks or longer were accepted. Adverse effects were assessed in randomized placebo-controlled trials and large observational studies. Although it was outside the original scope, we also assessed the effects of HA on pain because it is the most frequently reported primary outcome in trials of intraarticular HA injection; for this outcome, we identified a recent, comprehensive, good quality systematic review as well as randomized placebo-controlled trials published after the reviews.

Figure A. Analytic framework of the effects of hyaluronic acid (HA) (vs. placebo or active comparator) on function, pain, adverse events, and delay/avoidance of total knee replacement (arthroplasty)

Methods

Literature Search Strategy

The search strategy was based in part on a search conducted for a 2012 evidence review on HA, with the addition of search terms for the additional outcomes of interest: arthroplasty/total knee replacement, functional outcomes (e.g., WOMAC, Lequesne Index), ADLs, IADLs (including terms for the tools commonly used to assess ADLs and IADLs, e.g., Lawton IADL scale, Katz Index), and quality of life (Appendix A of the full report).

PubMed, CINAHL, EMBASE, Web of Science, SCOPUS, and Cochrane were searched from 1990 to the present to identify original studies of HA. The database Grey Matter was searched for grey literature, and clinicaltrials.gov was searched for not-yet-published findings and ongoing studies. The AHRQ Scientific Resource Center contacted the manufacturers of HA preparations approved for use in the US to obtain scientific information packets (SIPs). We searched the FDA Premarket Approval (PMA) database, any studies accepted for inclusion, and the SIPs for adverse events. Systematic reviews that reported on outcomes of interest were identified by searching the Cochrane Database, and original studies were obtained if not already identified among the results of the searches. Non-US studies were included if the intervention on which they reported was approved in the US for the indicated use, or if it was similar to a device
approved for use in the US. Non-English language studies were not included; however we
surveyed a random sample of the abstracts of non-English language studies to assess whether
these studies differed in any apparently systematic way from English-language studies (the
results are presented in Appendix E of the full report).

The titles and abstracts obtained from the literature searches were dually screened after being
input into the systematic review database, DistillerSR; all selected articles were obtained. A
second round of screening was then conducted with full text to exclude articles that provided no
usable data on the outcomes of interest; reported duplicate data; were observational in design and
reported only on adverse events and enrolled fewer than 500 participants; or enrolled a
population whose mean age was less than 65 years (unless the study outcomes were reported by
age group and we could abstract outcomes for older individuals). When conference abstracts of
interest were identified, we sought peer reviewed articles that reported the same data.

An update search will be conducted, dating back to 6 months prior to the initial searches,
while the draft report undergoes peer review. Any new analogs that have entered testing or been
approved for use will be added to the search strategy at that time and additional SIPs will be
requested. Any new articles identified by the update search or suggested by peer reviewers will
be screened using the methods applied initially.

Risk of Bias [Quality] Assessment of Individual Studies

Individual study quality/risk of bias (ROB) for randomized trials was assessed using a set of
questions adapted from the Cochrane Risk of Bias Assessment Tool25 and the EPC Methods
Handbook (chapter 5).26 The quality of observational studies included for assessment of efficacy
was assessed using a modification of the Newcastle-Ottawa Scale.27 The quality of systematic
reviews was assessed using the AMSTAR tool.28

Data Synthesis

Study-level details and outcome data were dually abstracted in DistillerSR. Disagreements
were reconciled with the input of the principal investigator. Data that were collected fell into two
categories: PICOTs (study-level data) and outcomes (study findings). Study-level data included
the population demographics (age, sex, weight status), fitness level (if reported), comorbidities,
disease stage, methods of ascertainment, intervention protocols, comparators, outcomes assessed
in the study, and time course of interventions. Data were abstracted for the following outcomes,
when reported: receipt of arthroplasty, time elapsed between HA therapy and surgery, change in
functional status (including ADLs/IADLs), QoL/Health-related QoL, and adverse events.

If a sufficient number of studies was determined to be relatively homogeneous with respect
to intervention, outcome, and follow-up times, we conducted a meta-analysis, estimating a
pooled random-effects estimate of the overall effect size using the Hartung-Knapp-Sidik-
Jonkman method for our random effects meta-analysis.29 This method has been preferred when
the number of pooled studies is small. It has been shown that the error rates are more acceptable
than the previously used DerSimonian and Laird method.30

To obtain an estimate of the clinical importance of the effect size, the minimum clinically
important difference (MCID), we multiplied the pooled effect size by the standard deviation
obtained from a large trial with a similar intervention for which functional outcome was assessed
using the WOMAC. We then compared this change (based on a 100-point Visual Analog Scale
[VAS]), to the MCID employed by a number of studies of the effects of treatment on WOMAC-assessed function, including a recent large systematic review. \(^{14}\)

Publication bias was assessed for all pooled outcomes using the Begg adjusted rank correlation test\(^ {31}\) and Egger regression asymmetry test.\(^ {32}\) Heterogeneity was assessed using the I\(^2\) test.\(^ {33}\) An effect-size or odds ratio was calculated for trials that reported data but did not contribute to a pooled analysis, and these studies were described narratively. All efficacy analyses were conducted with Stata statistical software, version 12.0 (Stata Corp., College Station, Texas). Because we identified several large, recent, comprehensive systematic reviews on the outcome of pain, we selected the most recent (and comprehensive) and described the results of this review as well as those of newer original trials that were not included in a prior meta-analysis.

Strength of the Body of Evidence

The strength of evidence was assessed for each conclusion within each key question using the EPC modification of the GRADE system (Table A).\(^ {34}\) The domains are defined in Appendix G of the full report.\(^ {35}\)

Applicability

The applicability of the findings was assessed based on age, study setting, and study design.

Results

We describe first the results of the literature searches, followed by the findings for effects of hyaluronic acid treatment on total knee replacement, function, quality of life, pain, and adverse events.

Results of Literature Searches

The searches of peer reviewed literature identified 2,149 unique titles. The partner, CMS, provided 84 titles, of which all but 9 were already included in the search results. Reference mining of those studies yielded an additional seven titles. The searches of grey literature yielded 47 titles. Information provided by manufacturers (Scientific Information Packets (SIPs)) included two titles, of which two unique titles were accepted. Altogether, 2,214 titles and abstracts went on to dual screening.

Of the 2,214 titles, 415 were initially identified for full-text review. The remaining 1,799 titles and abstracts were rejected for being animal or in vitro studies (372), not reporting on DJD of the knee (333), not using intra-articular HA injections (357), not reporting any outcomes of interest (53), having an inappropriate study design (e.g., obvious commentaries or non-systematic reviews) (390), not enrolling a population of interest (29), or being written in a non-English language (257). Eight articles could not be obtained.

A second level of screening was conducted on the 414 titles and abstracts initially identified for full-text review. Of the 414 titles, 274 were rejected: Studies were rejected at this stage for the following reasons: language not English (7), study design (78); participants excluded (5); interventions not of interest (4); outcomes not of interest (75); mean age less than 65 (71); adverse event (AE) reports with sample size less than 500 (27); or duplicate data (7). Of the
remaining 79 studies, 6 systematic reviews were accepted, 73 were background articles, and 62 were original studies that underwent detailed abstraction. These included RCTs that reported function, ADLs/IDLs, QoL, arthroplasty, and/or AEs (25); case series or prospective cohort studies reporting AEs or arthroplasty (total knee replacement) (19); or case reports reporting AEs (18). Of the case series and cohort studies that reported AEs, only those that enrolled populations of 500 or greater were included, to ensure detection of rare AEs.
Figure B. Literature Flow Diagram

Footnotes: ADLs=Activities of Daily Living; IADLs=Instrumental Activities of Daily Living AEs=Adverse events; CMS=Center for Medicaid Services; SIPS: Scientific Information Packets
Table A. Strength of Evidence

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Strength of evidence Grade</th>
<th>Study Design</th>
<th>No. Studies (N)</th>
<th>Study Limitations</th>
<th>Directness</th>
<th>Consistency</th>
<th>Precision</th>
<th>Reporting Bias</th>
<th>Other Issues</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthroplasty</td>
<td>Insufficient</td>
<td>RCTs</td>
<td>3</td>
<td>High</td>
<td>Direct</td>
<td>Consistent</td>
<td>Imprecise</td>
<td>Suspected</td>
<td>KR not intended outcome in 2 trials</td>
<td>No pooled effect size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observational</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function: HA vs. placebo</td>
<td>Low</td>
<td>RCTs</td>
<td>10</td>
<td>Moderate</td>
<td>Direct</td>
<td>Inconsistent</td>
<td>Precise</td>
<td>None</td>
<td>2ndary outcome</td>
<td>-0.23 (-0.34, 0.02)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Function: HA vs. HA</td>
<td>Insufficient</td>
<td>RCTs</td>
<td>5</td>
<td>High</td>
<td>Direct</td>
<td>Inconsistent</td>
<td>Imprecise</td>
<td>unknown</td>
<td>2ndary outcome</td>
<td>No pooled effect size</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Quality of Life</td>
<td>Insufficient</td>
<td>RCTs</td>
<td>2*</td>
<td>High</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Different outcome measures</td>
<td>No pooled effect size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse Events: total</td>
<td>Moderate</td>
<td>RCTs</td>
<td>25</td>
<td>Moderate</td>
<td>Direct</td>
<td>Consistent</td>
<td>Precise</td>
<td>Unknown</td>
<td>Cohort studies included patients<65</td>
<td>Similar rates of AEs were reported in studies of HA and placebo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observational cohort case reports</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse Events: serious (SAEs)</td>
<td>Moderate for the rarity of SAEs; Low for a difference between the intervention and placebo groups</td>
<td>RCTs</td>
<td>25</td>
<td>Moderate</td>
<td>Direct</td>
<td>Consistent</td>
<td>Imprecise</td>
<td>Unknown</td>
<td>Causal mechanism not proposed for some SAEs</td>
<td>Joint: 0.77(0.25, 2.31) Other: 0.62(0.23, 1.57)</td>
</tr>
</tbody>
</table>

*Two trials compared Synvisc® to Hyalgan®; one trial compared Hyalgan® to saline. Each used a different measure
Delay or avoidance of total knee replacement surgery

Three RCTs and 13 observational studies (reported in 15 articles) reported on total knee replacement (KR) after administration of intra-articular HA injections. Of the three RCTs, neither assessed KR as a prespecified outcome of interest: They reported it as a treatment failure.

Key Points

- Three RCTs enrolled small numbers of patients and reported on KR: Two did not specify KR as a prespecified outcome of interest but as a treatment failure, whereas the third reported it as the primary outcome. One study reported higher rates of KR among HA-treated patients, whereas the other two reported higher rates among placebo-treated patients.
- Six case series and seven cohort studies reported on KR as an outcome following HA treatment. Most studies reported delays in KR with HA injections compared with the usual progression or lower rates of KR with HA injections than usually seen in the absence of treatment. Two studies that assessed risk factors for undergoing KR among those treated with HA found that only baseline severity and age were factors: those in the 60 to 69-year old age range in one study and in the 65 to 79-year range in the other were significantly more likely than those younger or older to undergo KR, and in the former study, the time from diagnosis to KR was faster for the 60–69 year old age group. No study reported the criteria for knee replacement surgery or the characteristics that distinguished those who underwent surgery.

Intra-articular injection of hyaluronic acid and measures of function

We identified 18 randomized trials that compared the effects of HA with another HA or sham placebo control or both using a validated measure of function, including the WOMAC, Lequesne, ADLs, or IADLs, in individuals with OA of the knee whose average age was 65 or older. Two studies compared an HA to other active treatment.

Key Points

- Our meta-analysis of 10 studies that compared the effect of an HA to that of a sham placebo control showed a statistically significant improvement in WOMAC-assessed function following HA treatment, compared to placebo (standardized effect size or standardized mean difference [SMD] -0.23, 95% CI -0.34, -0.02) that did not achieve the MCID of -0.37 at follow-up, this effect size corresponds to 4.3 units on a 100mm VAS scale.
- The number of head-to-head trials is too small to be able to assess the relative superiority of one HA over another.
- Although no studies assessed the proportion of patients with improved function, seven studies assessed the proportion of patients with patient- or investigator reported global improvement; of the four that were placebo-controlled, three reported significant increases in the proportion of HA-treated patients who improved, compared with the proportion of placebo-treated patients who improved.
- No studies assessed the durability of effect.
Intra-articular injection of hyaluronic acid and quality of life

Three randomized trials were identified that assessed quality of life. A 2008 saline-controlled randomized trial assessed quality of life using the KOOS quality-of-life component.64 Two head-to-head trials that compared Genzyme Synvisc® with FIDIA Hyalgan® also assessed quality of life/health-related quality of life (HRQoL), one using the SF-36 mental component summary,57 and one using the EuroQol-5D index (for HRQoL).59

Key Points

- Three trials that compared HA to saline or to another HA found no differences in quality of life between the two groups at 6 months follow-up.

Intra-articular injection of hyaluronic acid and pain

Pain is the most frequently assessed outcome for HA but was not within the scope of the present review. However, these studies have been assessed in numerous recent systematic reviews,13, 14, 68-71 thus, we summarized the results of the most recent and most comprehensive systematic review of the literature on HA and pain14 as well as the results of two recent randomized head-to-head trials not included in the previous reviews that assessed the effects of HA on pain in individuals of average age 65 and over.54, 57

Key Points

- A large, comprehensive systematic review of RCTs that assessed the effects of HA on pain in 71 RCTs (with either sham or non-sham controls) reported that HA injections significantly reduce pain when assessed at 3 months (-0.37, 95% CI -0.46, -0.28) and the effect met the criterion for a MCID (-0.37, which corresponded to 9mm on a VAS scale of 0 to 100mm).
- When the reviewers performed a subgroup analysis that included only the 18 sham-controlled, assessor-blinded studies of sample size 100 or more per intervention group in the pooled analysis, the effect of HA was still statistically significant (-0.11, 95% CI -0.18, -0.04), but no longer met the criterion of clinical importance;
- When the reviewers conducted a stratified analysis to compare the effect size for the 54 studies with a sham control with that of 18 studies with a non-sham intervention, the pooled effect size for studies with a sham control was -0.34 (95% CI -0.44, -0.24), nearly equal to that for all studies and to the MCID.
- No new placebo-controlled trials were identified that were not already included in the comprehensive 2012 systematic review on the effects of HA, enrolled patients of average age 65 and older, and reported on pain outcomes.
- Two new head-to-head trials compared the effects of two different HAs on pain in individuals of average age 65 and over and were not included in prior SRs. One found that single injections of a high- and low-molecular weight were equally effective in reducing pain and improving function at 6 months (with no change in quality of life), whereas another found that three injections of an intermediate molecular weight HA
might be superior to low molecular weight HA over 6 months (with respect to reducing pain and improving function).

Intra-articular injection of hyaluronic acid and adverse events

Twenty four trials36-38, 54-67, 72-79 and 18 case reports80-97 were identified that reported on the incidence of adverse events among individuals 65 years of age and over.

Key Points

- In 24 placebo-controlled trials of HA, serious adverse events were small in number.
- Among three large cohort studies and case series, representing nearly 6,000 recipients of HA (some more than one series), one serious adverse event was reported: severe swelling and synovial fluid accumulation.
- Eighteen case reports provided reports of adverse events among 30 individuals 65 years of age or older, including five cases of sepsis (one case of staphylococcus scalded skin syndrome), and one case each of saphenous nerve injury, eosinophiluria, erythema, and herpes zoster (new onset).

Discussion

Key Findings and Strength of Evidence

Intra-articular HA and KR

Three randomized trials and 13 observational studies reported on total knee replacement (KR). Two of the trials did not regard receipt of TKR as a prespecified outcome of interest, one enrolled patients whose average was under 65, and those two trials were not powered to compare the rates of KR between HA and comparison groups. With only one trial powered to assess the effect of HA on KR and without larger retrospective case control or prospective cohort studies, it is not possible to draw conclusions at this time from the observational studies regarding the effect of HA treatment on delay or avoidance of KR.

The strength of evidence for this question is insufficient to draw any conclusions.

Intra-articular HA and Function

Pooling of ten placebo-controlled studies that reported outcomes for the WOMAC or Lequesne revealed a small but significant increase in function in favor of HA (-0.23, 95% CI -0.34, -0.02); seven of the ten measured outcomes at 6 months. Two studies reported no difference between HA and placebo. Based on the pooled effect size, approximately 11 percent of patients would have exceeded the MCID in improvement.

One trial reported on the effects of HA on ADLs. This study found no change from baseline in the HA or placebo group.

Three of four placebo-controlled trials that assessed the effect of HA on global improvement reported statistically significant increases in the proportion of HA-treated patients who improved, compared with the proportion of placebo-treated patients who improved.
Too few head-to-head trials were identified to be able to draw any conclusions about the superiority of any product over another. None of the identified studies stratified findings by age, sex, or any other outcome of interest. The strength of evidence for the conclusion based on placebo-controlled trials is low. The strength of evidence for the conclusion based on head-to-head trials is insufficient.

Intra-articular HA and QoL

Three randomized trials reported on the effects of HA on QoL with mixed results. No conclusions can be drawn about the effects of HA on QoL. As only three trials reported both QoL and functional outcomes, no conclusions can be drawn about the relationship between these two parameters.

The strength of evidence for this conclusion is insufficient.

Intra-articular HA and Pain

One recent comprehensive systematic review and meta-analysis that assessed the literature on the effects of HA on reducing pain compared the effects of HA with all other interventions and with saline controls alone reported that HA injections significantly reduced pain, both statistically and clinically (that is, the effect reached the MCID) when measured at 3 months; however, this effect was no longer clinically significant when only double-blind placebo-controlled trials enrolling at least 100 participants per treatment group were included in the analysis. Based on the findings of the full sample analysis and the analysis stratified by the use of sham controls in the prior systematic review, we believe that the strength of evidence is low that HA reduces pain, on average, by an amount that achieves or just approaches the minimum clinically important difference.

Intra-articular HA and AEs

The findings of randomized trials, observational studies, and case reports suggest that the adverse events associated with intra-articular injections of HA are nearly all at the site of injection or within the joint, largely confined to pain or swelling, and as likely in the placebo-treated as in the actively treated individual. Serious adverse events are rare. In 24 placebo-controlled trials of HA, serious adverse events were small in number. Estimates are imprecise, and the magnitude of any increase in risk is very small, if present at all. The rate of non-serious AEs was higher but did not differ significantly between the HA-treated and placebo-control groups. The FDA PMA database revealed no post-marketing reports of unexpected adverse events. Information provided by manufacturers about five products was limited to already published data.

The strength of evidence for the conclusion that serious adverse events are rare is moderate. The strength of evidence for a statistically significant difference in SAEs and non-serious AEs between intervention and placebo groups is low.

Findings in Relation to What is Already Known

To our knowledge, this report represents the first systematic review to attempt to assess the effects of intra-articular HA injections on both delay or avoidance of KR, pain, function, quality of life, and adverse events.
No other systematic reviews have attempted to synthesize the effects of HA on KR, and the present review found insufficient evidence to draw a conclusion about the effects of HA on those outcomes.

Regarding its effect on function, we calculated that the effect size in our study corresponded to an improvement of 5.6 units (on a 0-100 VAS scale) which was smaller than the minimum clinically important difference of 9 units (which would be comparable to a 10 percent improvement in, e.g., the ability to walk downstairs or to rise from sitting).

One large 2012 systematic review assessed the effects of HA on pain, function, and AEs.14 That review identified a moderate effect of HA on function that was no longer considered clinically important when only large trials with assessor blinding were considered. The pooled effect size for the 52 trials was -0.33 (95% CI -0.43, -0.22); including only large trials with blinded outcome assessment resulted in a pooled effect size of -0.09 (95% CI -0.17, 0.00). Although we regard sham controls and blinded outcome assessment vital for assessing the effect of HA on function, we believe that limiting the pooled analysis to larger studies is not methodologically justified, given the small proportion of studies that fit the criteria and the fact that study size is not typically a criterion in assessing study quality/risk of bias.

The present review is also the first to consider only studies of individuals of average age 65 or older. Approximately half of the trials included in the pooled analysis of the effects of HA on pain by Rutjes enrolled populations of average age less than 65; and of the 52 trials they included in their analysis of the effects of HA on function, nearly all included participants of average age less than 65.14 No evidence exists that would suggest age would affect the ability to experience pain relief. Therefore, we believe the analyses in the prior review that included studies of patients whose average age was less than 65, given the much larger number of included studies, were more adequately powered to assess the effects of HA on pain than would be an analysis that includes a smaller number of studies limited to individuals of average age 65 and over.

The current review found only a small number of serious AEs. The 2012 review reported that 14 of 89 trials found an increased risk for serious AEs in the HA-treated groups:14 Fewer than half of the trials included in the 2012 review assessment of serious AEs reported on specific AEs, and those that did had methodological limitations. A 2013 review of 29 studies found no difference in AEs between HA- and placebo-treated groups.68

Applicability

To increase potential applicability, we limited studies included in the current review with functional outcomes to those with an average age of 65 or older. Nevertheless, no studies excluded patients younger than 65. Given that the only study that assessed factors that might influence the likelihood of undergoing KR found that age was the only influential factor, age of study participants is likely to be an important consideration for this outcome.

The larger trials included in the assessment of functional outcomes were mostly conducted in academic settings; this typical characteristic of randomized trials tends to limit their applicability to community settings. However a number of the observational studies that addressed the outcome of KR were conducted in private medical practices.

Implications for Clinical and Policy Decision Making

The evidence identified for the current study is insufficient to support a decision either way about the efficacy of intra-articular HA injection based on the delay or avoidance of KR. In
addition, the strength of evidence is low regarding the efficacy of HA for improving quality of life or function in a population 65 years of age or older.

Limitations of the Comparative Effectiveness Review Process

Given the constraints of the project, we did not attempt to review studies of populations of average age less than 65 years to determine whether they found improvements in function or quality of life. However, removing the exclusion criterion of age we identified only one randomized trial that reported KR, and it was not considered a prespecified outcome of interest. We also did not contact authors of original research studies to request raw data by patient age and did not attempt to do new pooling of the studies included in the review by Rutjes and colleagues, to include only studies of older populations for reasons explained above.

Limitations of the Evidence Base

The majority of trials identified for the current report did not meet the criteria for a low risk of bias, primarily the result of inadequate reporting: Few trials described their recruitment strategy or method for allocation concealment. A number of studies had dropout rates higher than 20% (no studies addressed differences between dropouts and completers), and although most excluded individuals who had recently received corticosteroids or other courses of an HA, most also did not bar participants from using other modes of pain relief, such as NSAIDs. Further, few or no studies attempted to determine whether response to HA differed between groups of patients stratified by characteristics such as baseline age, disease severity (stage) or type; or duration of treatment, few studies followed patients long enough to measure duration of effect, and adverse events were not assessed using any type of standard methodology.

Specific to the outcome of function, only four placebo-controlled trials reported the actual percentage of participants who experienced global improvement, and only one trial measured knee replacement as a primary outcome.

Research Gaps

Clear research gaps exist regarding studies of the effectiveness of HA among individuals 65 years of age and older and the effect of HA, if any, on delay or avoidance of KR. Two searches for ongoing studies of HA and OA of the knee on Clinicaltrials.gov and review of entries provided by manufacturers revealed no completed, ongoing, or recruiting studies on older individuals with knee OA or with outcomes of KR. The observational studies identified for this review could not definitively answer the question of whether HA delays or prevents the need for KR. However, in the absence of a large, high quality RCT, we advocate analyzing data from any of the large administrative databases maintained by commercial payers, to answer the question as to whether beneficiaries who are treated with intra-articular HA proceed to KR at a slower rate than do those who do not receive HA. We realize that a number of factors might affect the decision to undergo KR, such as age, comorbidities, pain tolerance, activity level, aversion to surgical intervention, and expectations about one’s life expectancy; at least some of these factors could be controlled for in a large, well-designed case control study, although an RCT would be needed to provide a definitive answer.
Conclusions
The literature identified for the current review cannot answer the question whether HA delays or prevents the need for KR in older individuals. The literature suggests a small role, of unclear importance, for HA in improving function among older individuals and an equally small role in reducing pain among adults, with few serious adverse events.

References

65. Petrella RJ, DiSilvestro MD, Hildebrand C. Effects of hyaluronate sodium on pain

Introduction

Background

Condition

Osteoarthritis (also known as degenerative joint disease [DJD]) of the knee is a condition characterized by the progressive destruction of the cartilage that lines the knee joint, resulting in bone-on-bone friction, excessive wear of the bone surfaces, potential bone spurs, and accompanying pain, immobility, and reduction in function and the ability to complete activities of daily living (ADL).

In 2005, the estimated prevalence of osteoarthritis among adults in the United States, the number of individuals who had ever been told by a doctor that they had the condition, was approximately 27 million cases. Prevalence rates vary by the joint involved and the method of ascertainment (clinical vs. radiographic): symptomatically, the knee is the most frequently affected joint. The prevalence of osteoarthritis of the knee is increasing rapidly because of shifting population demographics: The primary risk factors for osteoarthritis of the knee are aging, obesity, prior injury, repetitive use, and female gender. The prevalence of symptomatic knee osteoarthritis may reach 50 percent by the age of 75, a concern for Medicare resources. In the first decade of the 21st century, the number of individuals in the US with a total knee replacement doubled (from some 2 million to approximately 4 million). The increase in obesity has translated not only into an increase in incidence of osteoarthritis of the knee but also into a younger age of onset and need for treatment; as a result, by the time individuals with osteoarthritis of the knee reach the age of Medicare eligibility, the length of time they have had the condition has grown, their cases are more advanced, and the risk that surgery will be needed has increased. Thus, the aging of the baby boomer population, along with the increased incidence and prevalence of obesity have created a perfect storm for an increase in the number of cases and the proportion of the population at risk for this condition, all representing an increasing strain on Medicare resources.

Diagnosis Strategies

Osteoarthritis of the knee is usually diagnosed clinically based on pain. Radiographic evidence of osteoarthritis may precede symptomatic osteoarthritis and unfortunately correlates weakly with symptom severity. Radiologic severity can be estimated using the Kellgren and Lawrence criteria; however, a number of versions of the criteria exist: At low cutoff scores, correlation with symptoms is poor, whereas at higher cutoff scores, agreement tends to be higher. The primary impact of these different versions of the criteria may be the challenge that they create in trying to use the different versions to assess, compare, and pool the findings of research studies. Some longitudinal studies have even used different criteria at different time points within the same study. Because of the variation in scores for radiographic finding under various versions of the criteria (especially for individuals with less-advanced disease), stratification is important.

Some evidence suggests that among individuals with knee pain, MRI demonstrates physical signs of osteoarthritic changes in the knee before they are visible radiographically.
Treatment Strategies

The goals of treatment for osteoarthritis of the knee include relief of pain and inflammation, slowing of progression, and improvement in or maintenance of mobility and function and quality of life. Measures used to assess the achievement of these outcomes are described below.

Treatment options for osteoarthritis of the knee include oral or topical analgesics (non-steroidal anti-inflammatories, acetaminophen), intra-articular injection of corticosteroids to reduce inflammation, physical therapy and exercise (both to strengthen muscles that support the affected joints and to increase range of motion), weight loss to reduce stress on the joints, bracing to reduce lateral motion and friction, partial or total arthroplasty (throughout this report, the terms arthroplasty and knee replacement are used interchangeably) for advanced cases, and more recent therapies such as viscosupplementation, involving local injections of the natural joint lubricant, hyaluronic acid, among other treatments.

Hyaluronic acid (HA, hyaluronate or hyaluronan) is a high molecular weight glycosaminoglycan that is naturally synthesized in plasma membranes of connective tissues and secreted into the synovial fluid surrounding joints, where it forms part of the extracellular matrix. Progressive osteoarthritis of the knee includes loss of the cells responsible for synthesizing this substance, resulting in lower viscosity endogenous hyaluronate. A large number of trials have examined the efficacy and safety of supplemental intra-articular hyaluronic acid injections (classified by the United States Food and Drug Administration as a medical device) to relieve pain and improve function in patients with DJD of the knee, with varying efficacy results. A number of systematic reviews have attempted to resolve these conflicting findings. Some reviews have reported positive outcomes whereas some have reported mixed effects or no effect. A 2010 update of an earlier systematic review actually found a decrease in the effect size for HA on knee osteoarthritis from the previous review. The discrepancies in outcomes may be due to study heterogeneity both within and among reviews (and original studies, themselves) with respect to population characteristics (such as average age or body mass index), intervention modalities (the particular HA employed), treatment and followup duration (the number of treatments as well as how long after treatment initiation outcomes are measured), and the actual outcomes measured (e.g., pain, functionality, HRQoL), as well as the measures employed. Heterogeneity may also be attributable to how efficacy is expressed, i.e., the proportion of each treatment group that responds positively to treatment vs. the mean change in that efficacy measure from baseline in the active treatment group vs. the comparison group. Finally, whether or not a study reports a positive effect of HA has been shown to depend, at least in part, on study design: whether participants are credibly blinded to treatment allocation and the outcomes of active treatment are compared to that of a placebo control.

Commercial preparations of HA differ in three respects: source, size, and dosing. Whereas the older HA were all purified from chicken comb (avian), some newer products are bioengineered in yeast cell cultures. The newer products also tend to be higher in molecular weight, the result of greater cross-linking. Products may be packed to be delivered as a single dose or in multiple doses. The products included in this report are shown in Table 1, along with their indications and recommended dosages (HA devices not approved for use in the United States are described in Appendix F).
<table>
<thead>
<tr>
<th>Device Source</th>
<th>Trade name(s)</th>
<th>Labeled indications</th>
<th>Dosing</th>
<th>Dose adjustments for special populations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% sodium hyaluronate Ferring Pharmaceuticals, Inc. October 2011 Non-Avian 2400-3600 kD</td>
<td>Euflexxa® Formerly Nuflexxa®, (Savient) approved December 2004</td>
<td>Indicated for treatment of pain in osteoarthritis of the knee in patients who have failed to respond adequately to conservative non-pharmacologic therapy and to simple analgesics (e.g., acetaminophen)</td>
<td>Three weekly injections into knee joint (20mg/2 mL)</td>
<td>Safety/effectiveness not known in pregnant/lactating women or children</td>
</tr>
<tr>
<td>Sodium hyaluronate Seikagaku Corp. March 2011 Avian Unknown MW (“high”)</td>
<td>Gel-One®</td>
<td>Indicated for the treatment of pain in osteoarthritis of the knee in patients who have failed to respond adequately to non-pharmacologic therapy, NSAIDs, or analgesics (e.g., acetaminophen).</td>
<td>Single injection into knee joint (30 mg/3 mL)</td>
<td>Safety/effectiveness not known in pregnant/lactating women or children</td>
</tr>
<tr>
<td>Sodium hyaluronate FIDIA Pharmaceutical Corp. May 1997 Avian 500-730 kD</td>
<td>Hyalgan®</td>
<td>Indicated for treatment of pain in osteoarthritis of the knee in patients who have failed to respond adequately to conservative non-pharmacologic therapy and simple analgesics, (e.g., acetaminophen)</td>
<td>Five* weekly injections into knee joint (20 mg/2 mL)</td>
<td>Safety/effectiveness not known in pregnant/lactating women or children</td>
</tr>
<tr>
<td>Hyaluronan Anika Therapeutics, Inc. February 2014 Non-Avian Unknown MW (“high”)</td>
<td>Monovisc™</td>
<td>Indicated for treatment of pain in osteoarthritis of the knee in patients who have failed to respond adequately to conservative non-pharmacologic therapy (e.g., acetaminophen)</td>
<td>Single injection into knee joint (88 mg/4 mL)</td>
<td>Safety/effectiveness not known in pregnant/lactating women or children</td>
</tr>
<tr>
<td>Hyaluronan Anika Therapeutics, Inc. February 2004 Non-Avian 1000-2900 kD</td>
<td>Orthovisc®</td>
<td>Indicated for treatment of pain in osteoarthritis of the knee in patients who have failed to respond adequately to conservative non-</td>
<td>Three or four weekly injections into knee joint (30 mg/2 mL)</td>
<td>Safety/effectiveness not known in pregnant/lactating women or children</td>
</tr>
<tr>
<td>Device Source</td>
<td>Trade name(s)</td>
<td>Labeled indications</td>
<td>Dosing</td>
<td>Dose adjustments for special populations</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Sodium Hyaluronate Seikagaku Corp. January 2001 Avian 620-1170 kD</td>
<td>Supartz®, Marketed as Artz® or Artzial® outside U.S.</td>
<td>Indicated for the treatment of pain in osteoarthritis of the knee in patients who have failed to respond adequately to conservative non-pharmacologic therapy and to simple analgesics (e.g., acetaminophen)</td>
<td>Five weekly injections into knee joint (25 mg/2.5 mL)</td>
<td>Safety/effectiveness not known in pregnant/lactating women or children</td>
</tr>
<tr>
<td>Hylan GF-20 Genzyme Corp. (Biomatrix, Inc.) August 1997 Avian 6,000 kD</td>
<td>Synvisc®</td>
<td>Indicated for treatment of pain in osteoarthritis of the knee in patients who have failed to respond adequately to conservative non-pharmacologic therapy and to simple analgesics (e.g., acetaminophen)</td>
<td>Three weekly injections into knee joint (16 mg/2 mL)</td>
<td>Safety/effectiveness not known in pregnant/lactating women or children</td>
</tr>
<tr>
<td>Hylan GF-20 Genzyme Corp. February 2009 Avian 6,000 kD</td>
<td>Synvisc-One®</td>
<td>Indicated for treatment of pain in osteoarthritis of the knee in patients who have failed to respond adequately to conservative non-pharmacologic therapy and to simple analgesics (e.g., acetaminophen)</td>
<td>Single injection into knee joint (48 mg/6 mL)</td>
<td>Safety/effectiveness not known in pregnant/lactating women or children</td>
</tr>
</tbody>
</table>

Treatment Guidelines

In the 2012 update to their 2000 guidelines for the treatment of osteoarthritis of the knee, hip, and hand, the American College of Rheumatology conditionally recommended hyaluronic acid injections for patients who had an inadequate response to initial (standard or more conservative) therapy.\(^8\) The 2013 American Academy of Orthopedic Surgeons guidelines for the treatment of osteoarthritis of the knee recommend against the use of hyaluronic acid to treat patients with symptomatic conditions.\(^16\)
Assessment of Outcomes of Treatment

A number of assessment tools are used to assess pain, quality of life, and physical functioning in patients with osteoarthritis of the knee. These tools can be divided into those specifically developed for knee osteoarthritis and those that are used for a variety of conditions.

Tools specifically developed and validated to assess pain and functioning associated with osteoarthritis of the knee as well as treatment outcomes include the Western Ontario-Macmaster (WOMAC17), the Lequesne Index18, the Knee Injury and Osteoarthritis Outcomes Score (KOOS19), and the Animated Activity Questionnaire.20 The Visual Analog Scale, which rates patient-reported responses on a scale from 0 to 100, is often used to quantify patient-reported outcomes for these scales as well as being used on its own. The WOMAC, probably the most widely used tool for assessing knee osteoarthritis, comprises three scales: pain, function, and stiffness; the function scale comprises 17 items that can be rated using a 5-item Likert scale (where 0=no difficulty and 4=extreme difficulty) or a 10 or 100-point Visual Analog Scale (VAS)17. In 2004, the Osteoarthritis Research Society International (OARSI) developed a consensus set of guidelines to assess the outcomes of research trials on products intended to treat osteoarthritis; and under the International League of Rheumatologists, OMERACT (Outcome Measures in Rheumatology) has developed guidelines on outcome measures.21

Several tools have been adapted for use in assessing osteoarthritis of the knee. One such tool, the Short form (SF)-36, developed at RAND for the Medical Outcomes Study,22 is generally used to measure quality of life. Assessment of health-related quality of life is an attempt to measure the impact of a health condition and its treatment on a patient’s life; the Euroqol has been validated for use in patients with osteoarthritis of the knee.23 The Activities of Daily Living scale (ADLs)24 measures the ability to perform basic daily tasks such as dressing/bathing, eating, ambulating, toileting, and hygiene. The Instrumental Activities of Daily Living (IADLs) scale allows the assessment25 of activities that are not needed for basic functioning but allow independent living.

The Kinemax Outcomes Group has used a combination of the WOMAC, the SF-36, and a series of questions addressing demographic characteristics to predict patient outcomes of total knee arthroplasty.26

Appendix H provides the WOMAC, Lequesne, and SF-36 instruments.

Scope and Key Questions

Scope of the Review

The purpose of this review is to assess the evidence on the effects of intra-articular injections of HA on functional outcomes and quality of life as well as their ability to prevent or delay the need for arthroplasty among individuals 65 and over. The Centers for Medicaid and Medicare Services (CMS) currently covers HA injections for elderly Medicare recipients under certain conditions.27 Arthroplasty and the postoperative rehabilitation it requires can be life-disrupting. If HA can relieve pain and improve function with minimal adverse effects, it may prevent or delay the need for this surgery. However, if the treatment delays arthroplasty but fails to halt progressive degeneration, patients could potentially experience worse outcomes, although thus far, evidence for such outcomes has been weak. In addition to assessing the evidence for a role of HA in delaying or preventing the need for KR, this report aims to assess the evidence to date on the efficacy of intra-articular injections of HA with respect to the outcomes of function, ADLs/IADS, quality of life, and pain and on the safety of HA when used
as indicated. The Coverage and Analysis Group at the Centers for Medicare and Medicaid Services (CMS) requested this report from The Technology Assessment Program (TAP) at the Agency for Healthcare Research and Quality (AHRQ). AHRQ assigned this report to the Southern CA Evidence-based Practice Center (HHSA290201200006I). A protocol for the review was provided to, and approved by, the AHRQ TAP.

Key Questions

The key questions were provided by the CMS Coverage Analysis Group. Their inter-relationship and association with the topic are described in the analytic framework below (Figure 1).

Key Question 1. Does intra-articular injection of hyaluronic acid eliminate the need for knee replacement surgery? Is this outcome affected by the type of hyaluronic acid, the type of presentation, severity at study entry, or age at study entry?

Key Question 2. Does intra-articular injection of hyaluronic acid significantly postpone the need for knee replacement surgery?

Key Question 3. Does intra-articular injection of hyaluronic acid improve the ability to successfully perform activities of daily living (ADLs) or instrumental activities of daily living (IADLs)?

Key Question 4. Does intra-articular injection of hyaluronic acid improve quality of life? PICOTs are the same as for KQ1-3 with the exception of outcomes.

The effects of hyaluronic acid injection on pain and adverse events associated with hyaluronic acid injection were not included in the key questions posed by CMS. However because pain is regarded as an important component of effectiveness for treatments for degenerative joint disease of the knee and because safety is also an important consideration, we volunteered to appraise this literature.

Figure 1. Analytic Framework

![Analytic Framework Diagram]
Organization of this report

The remainder of this report presents the methods used to conduct the literature searches, data abstraction, and analysis for this review; the results of the literature searches; the conclusions; and a discussion of the limitations as well as suggestions for future research.
Methods

Criteria for Inclusion/Exclusion of Studies in the Review

This report is based on a systematic search for randomized placebo-controlled trials, head-to-head trials, or quasi-randomized trials that reported results for individuals whose average age was 65 or older, and were powered to see a clinically important difference; that assessed the effects of HA; and that reported on any of the following outcomes: function, quality of life, delay of total knee replacement, prevention of the need for total knee replacement, and adverse events (as well as factors that might affect these outcomes, such as age, disease severity, or comorbidities). If no studies were identified that included the outcomes of interest, we included observational studies that assessed the outcome in question. Studies were included that enrolled individuals with other comorbidities and that enrolled community dwelling or institutionalized participants. The populations, interventions, comparators, outcomes, timeframes, and settings (PICOTs) of included studies are outlined below.

The efficacy of HA for pain relief has been reviewed in a number of systematic reviews within the past two years, including one comprehensive, high-quality systematic review. Therefore, to address the outcome of pain, we include this review as well as any original studies published concurrently or subsequently and not included in that review.

To broaden our search for reports of rare adverse events, we included observational studies (prospective cohort studies and case series) that enrolled or followed more than 500 individuals and individual case reports. We also searched for reports in the Food and Drug Administration’s Pre-Market Approval (PMA) database and requested information from the manufacturers of HA devices approved for use in the United States. Information obtained from the latter sources was checked against published data to ensure no duplicate data were included.

Only English-language studies were accepted for data abstraction. However, to ensure we were not systematically excluding studies that might report important outcomes, we screened the titles and English-language abstracts of a random selection of 30 non-English-language articles. Descriptions of these articles appear in Appendix E; none qualified for inclusion.

PICOTs

- **Population(s):**
 - Individuals with severe degenerative joint disease of the knee and no prior arthroplasty on the affected limb;
 - Comorbidities: studies that do not explicitly exclude individuals with any comorbidities that significantly and independently affect quality of life and activities of daily living (including involvement of the contralateral knee or of other joints) would be excluded or considered separately
 - Age 65 and over, male or female, community-dwelling or institutionalized (if studies enrolling only individuals 65 and over were not identified, we would broaden our inclusion criteria to include studies enrolling populations with mean age 65 and over)

- **Interventions:**
 - Hyaluronan

- **Comparators:**
 - Placebo (sham treatment)
• Non-steroidal anti-inflammatory drugs
• Corticosteroids
• Other forms/brands of hyaluronic acid

• **Outcome measures:**
 • Receipt of arthroplasty surgery within follow-up time, length of time before undergoing surgery
 • Range of motion
 • Pain
 • Activities of daily living/Instrumental activities of daily living
 • (Health-related) quality of life
 • Adverse effects of HA injection: physical effects, progression of disease (including flare ups)

• **Timing:**
 Surgical postponement outcomes: 12 months or longer
 Other efficacy outcomes: 3 months or longer

• **Settings:**
 All settings

Literature Search Strategies for Identification of Relevant Studies to Answer the Key Questions

The search strategy was based on one used for a 2012 evidence review on HA, with the addition of search terms for the additional outcomes of interest: arthroplasty/total knee replacement, ADLs, IADLs (including terms for the tools commonly used to assess ADLs and IADLs, e.g., Lawton IADL scale, Katz Index), and quality of life (Appendix A). To test the search strategy, we checked for the inclusion of a set of 84 articles provided to us by the CMS.

PubMed, EMBASE, Web of Science, SCOPUS, and the Cochrane Collection were searched from January 1, 1990 to late November, 2013 to identify original studies of HA. An update search will be conducted while this draft report is under review. To capture unpublished or not-yet-published efficacy and adverse event findings, we searched the NY Academy of Sciences database of grey literature; Grey Matters, a grey literature tool from the Canadian Agency for Drugs and Technologies in Health; clinicaltrials.gov; and the FDA PMA database as described above. The AHRQ SRC contacted the manufacturers of HA devices approved for use in the US to obtain scientific information packets (SIPS) on their products.

Systematic reviews of potential relevance were identified by searching the Cochrane Database. For the outcomes of function, ADLs/IADLs, quality of life, and prevention or delay of total knee replacement, systematic reviews were assessed for any original studies not already identified among the results of the searches. For the outcome of pain, we identified several recent comprehensive systematic reviews.

The output of the literature searches was transferred to DistillerSR™ for screening. Article titles and abstracts were dually screened with all selected articles obtained. A second round of screening was then conducted with full text to exclude articles that provided no usable data, reported duplicate data, enrolled participants whose mean age was less than 65 years of age, or reported only pain as an outcome. We searched accepted studies for additional references and
screened any articles of apparent interest. For studies of apparent interest reported in meeting abstracts, we searched for peer-reviewed articles; abstracts were not included as a source of original data.

Data Abstraction and Data Management

Articles accepted for inclusion were dually abstracted in DistillerSR, and any disagreements reconciled with the input of the project manager, SCEPC director, or local subject matter expert. Study-level data (PICOTs) included the population demographics (average age, age range, sex, body mass index), comorbidities, disease stage, methods of ascertainment, intervention protocols, comparators, outcomes assessed in the study, and time course of interventions and follow-up.

Outcomes data were abstracted from original research studies for the following outcomes if reported: receipt of arthroplasty, time elapsed between HA therapy and surgery, change or improvement in ADLs/IADLs and other measures of function, QoL/Health-related QoL, and harms (adverse effects).

Assessment of Methodological Quality of Individual Studies

The quality/risk of bias (ROB) of trials that reported on efficacy outcomes was assessed using the Cochrane Risk of Bias tool\(^28\) with the addition of several questions to assess elements of importance to this review. ROB was assessed in duplicate, with reconciliation of differences. A copy of the questions appears in Appendix D.

The quality of observational studies that reported on delay or avoidance of total knee replacement surgery was assessed using a modification of the Newcastle-Ottawa scale.\(^29\) A copy of the criteria is included in Appendix D.

To assess the quality of included systematic reviews and meta-analyses, we used AMSTAR, a measurement tool for the assessment of multiple systematic reviews.\(^30\) This tool contains eleven yes/ no items, such as whether the literature search was comprehensive, dual abstraction was used, and individual study characteristics are displayed. The tool has strong face and content validity, inter-rater reliability, and construct validity.\(^31\) A copy is included in Appendix D.

We rated the quality of RCTs included in the assessment of adverse events (AEs) using the McHarms assessment tool.\(^32\)

Data Synthesis

Studies Reporting on Efficacy. For the assessment of functional outcomes, we considered randomized placebo-controlled or head-to-head trials with blinded outcome assessment that reported changes in the score on a functional assessment scale such as ADL/IADLS, WOMAC or Lequesne); or changes in a measure of quality of life. Trials might report more than one outcome.

For RCTs that compared the effects of interventions with HA with placebo for functional outcomes (WOMAC, Lequesne, or KOOS scales), most trials reported the WOMAC as the measure of function for followup times that ranged from 4 to 52 weeks (all but three studies reported outcomes at 6 months). A standardized effect size was calculated for trials that reported a mean change from baseline by treatment group for a continuous outcome. In some cases, a mean change from baseline was not reported, but the mean outcome at baseline and at follow-up
was reported. Using this information, we could estimate the mean change from baseline. Because various scales (or various ranges of the same scale) were reported, we calculated a standardized effect size. This provides a unit-less measure. For trials that did not report the standard deviation of the mean change, one was estimated using the standard deviations of the baseline and follow-up means. If a follow-up standard deviation was not reported, then we assumed that the standard deviation was one-fourth the theoretical range for the specific measure in the trial.

For each comparison of interest, an unbiased estimate of Hedges’ g effect size and its standard deviation were calculated. A negative effect size indicates that the treatment group is doing better than its comparator group (i.e. placebo group or other active comparator). For trials that reported the number of patients having arthroplasty, a Peto’s odds-ratio (OR) was estimated. An OR less than 1 indicates that the treatment group has fewer arthroplasty patients than the comparison group.

Trials similar in outcome and treatment comparison were considered for meta-analytic pooling. Since some trials reported only the Lequesne score, we looked at trials that reported both the WOMAC and the Lequesne score to see if conclusions were the same. If so, then we felt justified in pooling the WOMAC and Lequesne score together. For trials that reported more than one follow-up time, the time closest to 26 weeks was used. Sensitivity analyses were conducted by excluding trials with follow-up times not close to 26 weeks. For comparisons that had at least three trials, we derived a pooled estimate of the overall effect size using the Hartung-Knapp-Sidik-Jonkman (HKSJ) method for our random effects meta-analysis. This method has been preferred when the number of pooled studies is small. It has been shown that the error rates are more acceptable than the previously used DerSimonian and Laird method. Publication bias was assessed for all pooled outcomes using the Begg adjusted rank correlation test and Egger regression asymmetry test. Heterogeneity was assessed using the I² test. An effect-size or odds ratio was calculated for trials that reported data but did not contribute to a pooled analysis. All efficacy analyses were conducted with Stata statistical software, version 12.0 (Stata Corp., College Station, Texas).

To obtain an estimate of the clinical importance of the effect size, the minimum clinically important difference (MCID), we multiplied the pooled effect size by the standard deviation obtained from a large trial with a similar intervention for which functional outcome was assessed using the WOMAC. We then compared this change (based on a 100-point VAS scale), to the MCID employed by a number of studies of the effects of treatment on WOMAC-assessed function, including a recent large systematic review.

In addition to obtaining the standardized effect size for each trial, we attempted to abstract the proportion of participants who reported improvement in function; a subset of studies reported on global improvement only.

The RCTs that compared active treatments head to head were not pooled, as the numbers of studies comparing the same interventions were insufficient. Similarly, the numbers of studies that reported on ADLs or quality of life were insufficient to allow pooling. The results are reported narratively. RCTs reporting on total knee replacement/arthroplasty were also small in number and are described narratively. Because only three RCTs reported on arthroplasty (and only one considered it as a treatment outcome), we included observational studies that assessed arthroplasty. The results of these studies are described narratively.

The effect of HA treatment on pain has been assessed in a number of recent systematic reviews, including one relatively high quality review published in 2012. This review pooled 71 RCTs that met their inclusion criteria of a minimum of 3 months follow up (without regard to
type of control or mean age of participants); in addition, they pooled only the 18 trials that had both placebo (sham) controls and enrolled more than 100 participants per study arm. They also conducted stratified analysis on a number of potential effect modifiers, including use of a sham control intervention. We describe the findings of this review and subsequent studies that reported on pain as an outcome narratively.

Studies Reporting on Adverse Events. Trials of any length were considered for the safety analysis. The AHRQ EPC Scientific Resource Center (SRC) contacted manufacturers of all HA devices approved for use in the US; citations for published studies received from manufacturers were deduplicated with published studies already identified in the literature searches. No unpublished data were provided. We also accessed the Food and Drug Administration (FDA) PostMarketing Assessment (PMA) database for information posted about HA products (code MOZ) this database includes information for six products approved for use in the US. Finally, we accessed the FDA Manufacturer and User Device Experience (MAUDE) database; however, we did not include MAUDE data in the report because the ages of the individuals about which the reports were filed could not be determined and because we did not include single case reports of adverse events.

Adverse event data extracted from RCTs included the name of each trial group, the description of the adverse event from the original article, the number of subjects in each group, and the number of subjects with each adverse event. Each event was counted as if it represented a unique individual. Because a single individual might have experienced more than one event, this assumption may have overestimated the number of people having an adverse event. Events described as adverse events or harms (and reported as part of a safety assessment) were extracted regardless of whether the study authors described them as being unrelated or related to the interventions.

Adverse events reported in RCTs were grouped using clinical expertise into three categories: local, joint, and other. Within those categories, events were further categorized as serious or not serious. For groups of events that occurred in three or more trials, we performed a meta-analysis to estimate the pooled odds ratio and its associated 95% confidence interval. Given that many of the events were rare, we used exact conditional inference to perform the pooling rather than applying the usual asymptotic methods that assume normality. We conducted the meta-analyses using the statistical software package StatXact Procs v9.0 (Cytel Software, Cambridge, MA).

Any significant pooled odds ratio greater than one indicates the odds of the adverse event associated with HA are larger than the odds associated with the comparison (placebo or active control) group.

Adverse events were also abstracted from prospective cohort studies and case series of 500 or more patients, and case reports of individuals age 65 or older.

Grading the Evidence for Each Key Question

The overall strength of evidence (SOE) was assessed for each conclusion within each key question using the EPC modification of the GRADE system. Domains included were study limitations (risk of bias), directness, consistency, precision, and reporting bias (definitions and criteria for these domains are provided in Appendix G). This method classifies the evidence according to the following criteria:
High = High confidence that the evidence reflects the true effect. Further research is very unlikely to change our confidence in the estimate of effect.

Moderate = Moderate confidence that the evidence reflects the true effect. Further research may change our confidence in the estimate of effect and may change the estimate.

Low = Low confidence that the evidence reflects the true effect. Further research is likely to change our confidence in the estimate of effect and is likely to change the estimate.

Insufficient = Evidence either is unavailable or does not permit a conclusion.

The applicability of the findings was assessed based on age, community residence, comorbidities, weight status, and study size.

Peer Review and Public Commentary
To Be Added for Final Version
Results

Introduction

This chapter first describes the results of the literature searches and then provides the results for the outcomes of interest in the following order: delay or avoidance of total knee replacement; measures of function, including ADLs/IADLs; quality of life; pain; and adverse events.

Results of Literature Searches

The searches of peer reviewed literature identified 2,149 unique titles (Figure 2). The partner, CMS, provided 84 titles, of which all but 9 were already included in the search results. Reference mining of those studies yielded an additional seven titles. The searches of grey literature yielded 47 titles. Information provided by manufacturers (Scientific Information Packets (SIPs)) included two titles, of which two unique titles were accepted. Altogether, 2,214 titles and abstracts went on to dual screening.

Of the 2,214 titles, 415 were initially identified for full-text review. The remaining 1,799 titles and abstracts were rejected for being animal or in vitro studies (372), not reporting on DJD of the knee (333), not using intra-articular HA injections (357), not reporting any outcomes of interest (53), having an inappropriate study design (e.g., obvious commentaries or non-systematic reviews) (390), not enrolling a population of interest (29), or being written in a non-English language (257). Eight articles could not be obtained.

A second level of screening was conducted on the 415 titles and abstracts initially identified for full-text review. Of the 415 titles, 275 were rejected: Studies were rejected at this stage for the following reasons: language not English (7), study design (78); participants excluded (5); interventions not of interest (4); outcomes not of interest (75); mean age less than 65 (71); AE reports with sample size less than 500 (27); or duplicate data (7). Of the remaining 79 studies, 6 systematic reviews were accepted, 73 were background articles, and 62 were original studies that underwent detailed abstraction. These included RCTs that reported function, ADLs/IADLs, QoL, arthroplasty, and/or AEs (25); case series or prospective cohort studies reporting AEs or arthroplasty (total knee replacement) (19); or case reports reporting AEs (18). Of the case series and cohort studies that reported AEs, only those that enrolled populations of 500 or greater were included, to ensure detection of rare AEs. Appendix B provides a list of excluded studies with the reasons for exclusion.
Figure 2. Literature Flow Diagram

Figure Notes: ADLs=Activities of Daily Living; IADLs=Instrumental Activities of Daily Living; AEs=Adverse events; CMS=Center for Medicaid Services; SIPs: Scientific Information Packets
Table 2. Strength of Evidence

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Strength of evidence Grade</th>
<th>Study Design</th>
<th>No. Studies (N)</th>
<th>Study Limitations</th>
<th>Directness</th>
<th>Consistency</th>
<th>Precision</th>
<th>Reporting Bias</th>
<th>Other Issues</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthroplasty</td>
<td>Insufficient RCTs</td>
<td>High Direct Consistent Imprecise Suspected KR not intended outcome No pooled effect size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function: HAs vs. placebo</td>
<td>Low RCTs</td>
<td>Moderate Direct Inconsistent Precise None 2ndary outcome -0.23 (-0.34, 0.02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function: HA vs. HA</td>
<td>Insufficient RCTs</td>
<td>High Direct Inconsistent Imprecise unknown 2ndary outcome No pooled effect size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality of Life</td>
<td>Insufficient RCTs</td>
<td>High n/a n/a n/a n/a Different outcome measures No pooled effect size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse Events: total</td>
<td>Moderate RCTs</td>
<td>Moderate Direct Consistent Precise Unknown Cohort studies included patients<65 Similar rates of AEs were reported in studies of HA and placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse Events: serious (SAEs)</td>
<td>Moderate for the rarity of SAEs; Low for a difference between the intervention and placebo groups RCTs 25 Moderate Direct Consistent Imprecise Unknown Causal mechanism not proposed for some SAEs Joint: 0.77(0.25, 2.31) Other: 0.62(0.23, 1.57)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Notes: *Two trials compared Synvisc® to Hyalgan®; one trial compared Hyalgan® to saline. Each used a different measure
Delay or avoidance of knee replacement surgery

Three RCTs and 14 observational studies reported on knee replacement (KR) after administration of intra-articular HA injections. Of the three RCTs, only one assessed KR as a prespecified outcome; the other two reported it as a treatment failure.

Key Points

- Three RCTs enrolled small numbers of patients and reported on KR, although it was not a prespecified outcome of interest in two of the studies: One reported higher rates of KR among HA-treated patients, whereas the other two reported higher rates among placebo-treated patients.
- Six case series and seven cohort studies reported on KR as an outcome following HA treatment. Most studies reported delays in KR in patients who received HA injections compared with the usual progression among patients who did not receive KR, or lower rates of KR in patients receiving HA than usually seen in the absence of such treatment. Two studies that assessed risk factors for undergoing KR among patients who received HA found that only baseline severity and age were factors: those in the 60 to 69 year old age range in one study and in the 65 to 79-year range in the other were significantly more likely than those younger or older to undergo TKR, and in the former study, the time from diagnosis to TKR was faster for this age group. No study reported the criteria for knee replacement surgery or the characteristics that distinguished those who underwent surgery.

Detailed Synthesis

No systematic reviews were identified that reported on studies assessing the rate of KR among patients who were treated with HA.

We identified three randomized trials\(^41,42,43\) that reported the number of people needing arthroplasty. However, KR was a pre-specified outcome of interest in only one of the studies, and the others showed indications of high risk of bias. Two of the three trials demonstrated non-significant trends, indicating that fewer people in the Hyalgan\(^\text{®}\) group had arthroplasty than the placebo group.

The first study was a 1-year trial of Hyalectin, a higher molecular weight avian product (four weekly doses) vs. saline placebo conducted in 1993 (quality assessed as moderate risk for bias).\(^41\) A group of 110 patients (mean age 68, 71% women) were divided into two groups; the primary outcome was improvement in effusion and secondary outcomes were pain and function. Between week 7 and 52, two patients in the active intervention group and 5 in the placebo group underwent KR (OR 0.41, 95% CI 0.09, 1.89).

The second study was a 1-year trial of Hyalgan, a lower molecular weight avian product (5 weekly doses) vs. arthroscopic washout conducted in 2003 (quality assessed as moderate risk).\(^42\) A group of 38 patients (mean age 62, proportion of women not reported) were randomized into the two groups. At 1 year, two patients from the active intervention and one patient from the arthroscopy group had undergone KR; one patient from the active intervention and two patients from the arthroscopy group were on a waiting list for KR; and two additional patients from the active intervention group had undergone arthroscopy and were on a waiting list for KR (OR 0.54, 95% CI 0.08, 3.59). The third study was a 1-year trial of two cycles of Hyalgan (5 weekly doses each) vs. placebo control conducted in 2008 (quality assessed as low risk of bias).\(^43\) A
group of 42 patients (mean age 67.9, 76% women) on the waiting list for KR were randomly assigned to the two treatment groups. The primary outcome was avoidance or delay of KR; secondary outcomes included WOMAC pain, function, and stiffness, and adverse events. At one year, survival analysis showed a non-statistically significant higher survival time until knee replacement in the HA group compared with the placebo group (368.8 days vs. 253.9 days, p=0.249). The proportion who discontinued treatment at 24 weeks due to lack of efficacy was also non-statistically significantly higher in the placebo group (87% vs. 64%, p=0.06). Knee surgery was avoided in 9 HA-treated patients and 3 placebo-treated patients (OR 0.30, 95% CI, 0.08, 1.10). The randomized trials are described in evidence tables included in Appendix C.

Six case series reported on KR as an outcome (Table 3). Numbers of enrolled patients ranged from 69 (73 knees) to 863 (1,187 knees). Three of the studies administered Hylan GF-20 (Synvisc®, a higher molecular weight avian product), one administered Hyalgan, one administered Suplasyn, a lower molecular weight synthetic, and one administered Supartz™, a medium-high molecular weight avian hyaluronic acid. Follow-up times ranged from 6 months to 5 years. Rates of KR in these studies of HA-treated patients varied from fewer than 1% for 310 patients treated with Suplasyn and followed for 6 months, to 19% of 1,187 knees treated with Hylan GF-20 and followed over 5 years. None of the studies specified the criteria for recommending patients to undergo surgery.

Two medium-sized and one large retrospective case series on patients treated with HA assessed the effect of various factors on the likelihood of these patients undergoing TKR and the time to TKR by age group. One medium-size study reported that those who underwent TKR tended to be older than those who did not but that BMI did not differ between the groups. The other medium sized study reported that those with Grade IV (67%) and those 65-79 years of age (34%) were more likely than those with less severe disease or in older or younger age groups to get KR. The larger study found that the likelihood of undergoing KR did not differ by sex, BMI, history of effusion, or baseline VAS for pain. Only age range was a factor. HA-treated patients 60 to 69 were significantly more likely to undergo KR than patients under 50, patients 70 to 79, and those over 80, and patients in the younger age groups (50–79) were 2-3 fold more likely to get a KR than those 80 and over. Median time to KR for HA recipients was 1.8 years (14–2,147 days). Median followup time was 2.2 years (7–2,222 days). Seventy-five percent of knees had not had KR by 3.8 years. Time to KR was associated only with age: 60-69 year olds had a significantly shorter time to KR than other age groups.

Several other case series also reported on the average or longest time to KR in treated patients. For example two case series reported mean lag times of more than 6 months in those who underwent the procedure, and a large multi-site study of Supartz™ reported that the mean time to KR was 1.99 years and time to KR was as long as 4 years.

Nine articles reported on seven cohort studies that assessed KR as an outcome (Table 4). Numbers of enrolled patients ranged from 76 (92 knees) to 1,047 (1,489 knees). All studies enrolled patients with mean ages over 65, except one. Three studies administered Hylan GF-20 (Synvisc); two administered Hyalgan; one administered Durolane, a non-avian product of medium molecular weight administered as a single injection; and one administered Adant, a non-avian medium molecular weight product administered in three to five weekly doses. Follow up times ranged from 6 months to 4.5 years. Rates of KR varied among studies as did the methods of reporting. One study that administered Hyalgan reported that over two years, 12 of 15 patients originally scheduled for KR cancelled the procedure. The study that reported its findings in
three articles reported that over a followup of 24 months, 20% of patients underwent KR; over 54 months, 28.4% of patients had undergone TKR, with a mean time to surgery of 15.4 months. When they stratified patients by Ahlback Grade, 4% of patients in the lowest severity group (Ahlback Grades of 1 or 2) underwent KR, 32.9% of patients in the medium severity group underwent KR, and 13.4% of patients in the highest severity group underwent KR. Hylan GF-20 was associated with lower rates of KR in two studies by the same group, but with a 22% rate of KR in another study. As with the retrospective studies, no study specified the criteria used to recommend patients proceed to KR.

A modification of the Newcastle-Ottawa instrument was used to assess the risk of bias of the included observational studies (Table 5). Risk of bias varied, with most studies indicating scoring on the moderate to high risk of bias side. Few studies attempted to control for baseline differences in comorbidities, few reported financial conflicts of interest, and patients were aware of their treatment in every instance.
<table>
<thead>
<tr>
<th>Author, Year</th>
<th># Patients/ Mean Age (SD)/ Age Range/ % Female/ Mean BMI/ Mediating Factors</th>
<th>Inclusion Criteria/ Exclusion Criteria</th>
<th>Intervention/ Dosing Schedule/ Follow-Up Times</th>
<th>Outcomes Reported</th>
<th>Efficacy Results</th>
<th>AE Results</th>
<th>Conclusions and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrett, 2002*</td>
<td>249 patients (363 knees) treated Mean age 72 years / range 30-97 years/ 51.2% female/ BMI 29</td>
<td>Inclusion: ACR OA diagnosis and radiogram within prior 6 months, completion of 5-injection course Exclusion: receipt of 2nd course within 12 months (to study effects of single treatment course); significant alteration in exercise routine within 6 months</td>
<td>Hyalgan 5 injections/ 1 per week 6 months</td>
<td>Lack of TKR or other significant intervention therapy; secondary outcomes assessed in patients who avoided KR: QOL, pain (reported as improvement, non-improvement)</td>
<td>60.1% of knees (61.8% of patients) were considered clinically improved at 6 mos. 39.9% were judged as failures (20.3% underwent TKR); Risk for KR depended somewhat on compartmental involvement</td>
<td>“Excellent safety profile”</td>
<td>Single-course Hyalgan delayed or avoided TKR for at least 6 months in the majority of knees. Successes tended to be younger but did not differ on BMI</td>
</tr>
<tr>
<td>Campbell, 2004**</td>
<td>69 (73 knees)/ 62.2 years / range 37-90/ 44% women</td>
<td>Inclusion: Confirmation with plain x-rays or arthroscopy; Exclusion: none</td>
<td>Hylan GF-20 (Synvisc) 3 injections immediately after arthrocentesis Mean FU 8 months</td>
<td>Subjective improvement, total knee replacement, other treatments</td>
<td>61 patients identified for followup (90%) 51% of respondents reported a range of improvement; 11 patients underwent surgery including 7 knee replacements</td>
<td>Swelling/redness (6 patients) Pain at injection site (12) Apparent sepsis (3)</td>
<td>Patients were allowed to continue other methods of management; HA provided short-term relief for about half of patients but authors had largely discontinued use</td>
</tr>
<tr>
<td>Evanich, 2001**</td>
<td>84 patients</td>
<td>First 100 knees to Hylan GF-20</td>
<td>Pain, function, Loss to followup</td>
<td>12 knees</td>
<td>Higher and lower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, Year Country</td>
<td># patients/ mean age (SD)/age range/ % female/ mean BMI/ mediating factors</td>
<td>Inclusion criteria/ exclusion criteria</td>
<td>Intervention/ dosing schedule/ follow-up times</td>
<td>Outcomes reported</td>
<td>Efficacy results</td>
<td>AEs results</td>
<td>Conclusions and comments</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>---</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US</td>
<td>66±14 years/age range NR/61% women/BMI NR</td>
<td>receive HA at authors’ clinic</td>
<td>(Synvisc) 3 injections FU 12 months</td>
<td>KR, other procedures (CS injection, arthroscopy) over 12 months</td>
<td>14 patients; 80 knees in 70 patients followed over 12 months 20 of 80 (25%) knees underwent TKR (20 patients) at an average of 6.7 months Those with Grade IV (67%) and those 65-79 years of age (34%) were more likely than those with less severe disease or in other age groups to get KR. 2 more had arthroscopy.</td>
<td>experienced AEs: 1 case of staph septic arthritis (2 weeks post initial injection), 11 cases of pain and swelling</td>
<td>age (compared with 65-79 years) and lesser severity decreased likelihood of undergoing TKR. Outcomes assessed by clinic nurse, not patient’s own provider</td>
</tr>
<tr>
<td>Mazieres, 2007**</td>
<td>310 patients, 296 of whom were assessed for outcomes/69± 10 years/age range 36-88; 65% women/BMI 28±5 (30% obese) 36.5% of patients had both knees affected</td>
<td>Inclusion:>18 years; knee OA meeting ACR criteria; inadequate self- or MD-reported response to level 1 or 2 analgesics or NSAIDS within last 3 months Exclusion: effusion; history of intra-articular CS therapy within past 3 months, history of HA therapy within last year;</td>
<td>Suplasyn 3 injections FU 3 months, 6 months</td>
<td>Kellgren Lawrence, Lequesne; WOMAC pain and function, QoL (SF-12); costs (including procedures)</td>
<td>Of the 310, 14 were withdrawn early; 296 patients were assessed for outcomes: 1 partial KR and 1 KR were performed; significant improvements in WOMAC, Lequesne, SF-12</td>
<td>NR</td>
<td><1% TKR after at least 2 injections Suplasyn</td>
</tr>
<tr>
<td>Author, Year</td>
<td># patients/ mean age (SD)/age range/ % female/ mean BMI/ mediating factors</td>
<td>Inclusion criteria/ exclusion criteria</td>
<td>Intervention/ dosing schedule/ follow-up times</td>
<td>Outcomes reported</td>
<td>Efficacy results</td>
<td>AEs results</td>
<td>Conclusions and comments</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Waddell, 2007 [48] US</td>
<td>1,187 knees (863 patients)/mean age of patients who underwent KR: 66.8±10.02 (36-89), patients without TKR: 67.5±13.3 (28-98); 60% Female for both groups</td>
<td>Inclusion criteria: Any grade OA; unsuccessful treatment with NSAIDs and analgesics (WOMAC or pain VAS score of 50 or more) Exclusion criteria: mechanical problems, deformities due to OA, contraindications to HA (hypersensitivity, target knee joint infections, skin diseases, infections in area of injection site) (inclusion criteria for KR: K-L Grade IV and VAS pain score ≥60)</td>
<td>Hylan GF-20 (Synvisc) 3 injections (1997-2003) administered using a fluoroscopic technique to ensure accurate needle placement; repeat courses for some patients; prescription pain killers allowed for post injection pain and swelling</td>
<td>Primary outcome time to TKR</td>
<td>19% of knees treated with HA underwent KR. Undergoing TKR did not differ by sex, mean age, BMI, history of effusion, or baseline VAS for pain. Only age range was a factor. Patients 60-69 were significantly more likely than patients under 50, patients 70-79, and those over 80 to undergo KR, and patients in the younger age groups (50-79) were 2-3 fold more likely to get a TKR than those 80 and over. Median time to KR for HA recipients was</td>
<td>NR</td>
<td>Retrospective case series review; KR candidates who are not candidates for HA in this clinic typically undergo surgery within 3 months of first visit; in comparison, median time to KR in HA recipients was 638 days (median followup 810 days). Authors acknowledge lack of information on patients who did not receive KR within the followup time and other limitations.</td>
</tr>
<tr>
<td>Author, Year</td>
<td># patients/ mean age (SD)/age range/ % female/ mean BMI/ mediating factors</td>
<td>Inclusion criteria/ exclusion criteria</td>
<td>Intervention/ dosing schedule/ follow-up times</td>
<td>Outcomes reported</td>
<td>Efficacy results</td>
<td>AEs results</td>
<td>Conclusions and comments</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Whitman, 2010 US</td>
<td>220 patients (303 knees); average age 70.9; range 35-99; 74.5% female</td>
<td>Inclusion: age ≥ 18 years, confirmed diagnosis of OA, at least one repeat treatment with Supartz™ Exclusion: NR</td>
<td>5 weekly injections, follow-up 5 years</td>
<td>Pain, KR, AEs</td>
<td>Overall rate of KR: 23/303 (7.6%) Local site rates (5 sites) ranged from 1.8% to 24.0%. Mean time to KR 1.99 years (0.5 to 4 years)</td>
<td>26 total AEs none severe</td>
<td>Supartz was thought to delay or prevent need for KR. 92 percent of patients reported improvement in pain</td>
</tr>
</tbody>
</table>

Table Notes: CS corticosteroids; FU follow-up; HA hyaluronic acid; OA osteoarthritis; KR total knee replacement
<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Country</th>
<th># patients/ mean age (SD)/age range/ % female/ mean BMI/ mediating factors</th>
<th>Inclusion criteria/ exclusion criteria</th>
<th>Intervention/ dosing schedule</th>
<th>Outcomes reported/Follow-up times</th>
<th>Efficacy results</th>
<th>AEs results</th>
<th>Conclusions and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anand, 2010</td>
<td>US</td>
<td>167 patients/ mean age 59.4 (range 15-92)/57% female Ahlbeck classification used: 1 Grade 1, 20 Grade 2, 104 Grade 3, 5 Grade 4</td>
<td>Inclusion criteria (for analysis): 1 completed course of HA, failure at previous protocol (NSAIDS, strength training, weight reduction, shoe modification, bracing, topical anesthetics, intra-articular CS) 119 patients had undergone prior arthroscopy.</td>
<td>Patients offered HA or KR; all opted to try HA: Synvisc (1999-2003)</td>
<td>Self-reported satisfaction, KR, AEs/6 months—5 years FU</td>
<td>130 patients underwent chart evaluation. Average number of courses HA: 1.6, 6-36 months between intervals. 45 patients were advised to proceed to surgery (including 17 who responded poorly at 6 months). 29/45 underwent surgery, including 24 KR and 5 partial (22%). All KR patients were Grade 3-4 at baseline. Of 109 patients seen at 5-year followup, 58.7% had not had surgery and were doing well.</td>
<td>3 patients developed toxic synovitis</td>
<td>Authors conclude HA can delay need for KR</td>
</tr>
<tr>
<td>Jurado, 2013</td>
<td>Spain</td>
<td>224 patients/65.7 years/age range 34-89/67.9% female/</td>
<td>Inclusion criteria: diagnosis of OA according to Spanish Society of Rheumatology criteria; no other mechanical joint problems; no contraindications to HA; consistent use of same HA product; minimum 1-year followup Criteria for referral</td>
<td>Durolane (NASHA HA) 22 patients (9.2%) did not receive HA</td>
<td>Referral and time to referral for KR/mean follow up 374 days (95% CI, 323, 425) (range 0-1547 days) Effects of gender, age, comorbidity, number of joints affected, severity at last follow-up, progression, pain, HA on time</td>
<td>40 patients (17.9%) were referred for KR. Mean follow-up was 328 days (95% CI, 232, 424). 20 of the 40 referred received KR. 9.1% of these patients were referred for surgery (these patients had lower average Kellgren-Lawrence classifications than those treated with NR</td>
<td>Age over 65, involvement of both knees, severity of OA, lower pain intensity, and HA were each associated with longer time to KR; HA was associated with 1093 days to KR (95% CI, 980, 1206) vs.</td>
<td></td>
</tr>
<tr>
<td>Author, Year Country</td>
<td># patients/ mean age (SD)/age range/ % female/ mean BMI/ mediating factors</td>
<td>Inclusion criteria/ exclusion criteria</td>
<td>Intervention/ dosing schedule</td>
<td>Outcomes reported/ Follow-up times</td>
<td>Efficacy results</td>
<td>AEs results</td>
<td>Conclusions and comments</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>--</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>Korkmaz, 2013<sup>13</sup> Turkey</td>
<td>705 patients/ mean ages and sex ratios reported by diagnostic group and treatment group; only Grade 4 patients in the HA group had mean age>65 (68±13.3)</td>
<td>Inclusion criteria: ACR diagnosis Exclusion criteria: intra-articular injection within prior 3 months; arthroscopic intervention within prior year; history of pain with intra-articular injection</td>
<td>218 patients received Adant once weekly for 3 weeks; 487 patients received only NSAIDs and exercise prescriptions (2007-2009)</td>
<td>Surgical intervention at 1-year follow-up</td>
<td>197 patients received all HA treatments. Of those patients, 20 surgical procedures were done, including 7 KR (3 were done in patients with grade 3 OA and 4 in patients with grade 4 OA). Of 487 patients who received NSAIDs, 62 had surgery, including 26 KR</td>
<td>HA) Viscosupplementation increased the time between referral until surgery but not significantly.</td>
<td>694 (95%CI, 548, 839) (p=.064)</td>
<td></td>
</tr>
<tr>
<td>Neustadt, 2003<sup>10</sup> US</td>
<td>76 patients (92 knees)/64±7.4 years/40-80 years/60% > 65 years/21% female</td>
<td>No inclusion/exclusion criteria; all patients had moderate-severe OA, Kellgren-Lawrence II-IV, pain unresponsive to conventional treatments</td>
<td>Hyalgan 5 weekly injections</td>
<td>Physical exam, radiographs, AEs, ADLs/QoL, KR/ weekly and then at 6, 12, and 24 months</td>
<td>72% of patients achieved >50% improvement in in pain for ≥1 year 12 of 15 patients scheduled for KR no longer considered procedure necessary at 1 year; 15 of 19 avoided or delayed KR at 2 years.</td>
<td>No systemic AEs Minor AEs were infrequent and included injection site bruising and pain, rare headache, nausea; no pseudoseptic reactions</td>
<td>HA seemed to be associated with reduced need for KR. Improvement decreased with increasing Kellgren-Lawrence score, but this was not determined for</td>
<td></td>
</tr>
<tr>
<td>Author, Year</td>
<td># patients/mean age (SD)/age range/% female/mean BMI/mediating factors</td>
<td>Inclusion criteria/exclusion criteria</td>
<td>Intervention/dosing schedule</td>
<td>Outcomes reported/Follow-up times</td>
<td>Efficacy results</td>
<td>AEs results</td>
<td>Conclusions and comments</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Turajane, 2009<sup>12</sup> Thailand</td>
<td>183 patients (220 knees) /68.74 years/range 50-84 years/75% female/BMI 25.21 (same as Turajane, 2007a)</td>
<td>Same as Turajane, 2007</td>
<td>Hyalgan: 3 weekly injections, at least 1 course Patients who responded well were recommended to receive additional courses at 6-12-month intervals</td>
<td>Time to KR over 54-month follow-up</td>
<td>Incidence of KR was 28.4%, mean time to KR: 15.4 months (0.7-51.7 months) Mean follow-up time for patients who did not undergo KR was 45.6 months (19.0-53.1 months)</td>
<td>NR</td>
<td>Repeated courses of HA were efficacious in delaying KR in patients who responded to tx</td>
<td></td>
</tr>
<tr>
<td>Turajane, 2007a<sup>53</sup> Thailand</td>
<td>195 patients (220 knees) /68.74 years/range 50-84 years/75% female/BMI 25.21 (same as Turajane 2007b)</td>
<td>Same as Turajane, 2007a</td>
<td>Hyalgan: 3 weekly injections, at least 1 course Patients who responded well received additional courses at 12-month intervals</td>
<td>Cost analysis of HA after ≥2 years follow-up</td>
<td>183 patients completed treatment; 146 patients (164 knees) responded to HA; 37 patients required surgery by 24 months (20%). Of the responders, 83 patients received a second course of tx and 14 received a third course.</td>
<td>NR</td>
<td>Retrospective cohort study enrolled 2001-2004 HA is cost effective</td>
<td></td>
</tr>
<tr>
<td>Turajane, 2007b<sup>54</sup> Thailand</td>
<td>195 patients (220 knees) /68.74 years/range 50-84 years/75% female/BMI 25.21 Patients divided into three groups by Inclusion criteria: Primary knee OA by ACR criteria, failure of conservative treatment more than 6 months (anti-inflammatory), no contraindication for surgery Exclusion criteria:</td>
<td>Hyalgan: 3 weekly injections, at least 1 course Patients who responded well received additional courses at 12-month</td>
<td>WOMAC, delay or cancellation of surgery, AEs Follow-up >24 months (24-48 months)</td>
<td>183 patients (206 knees) completed study. WOMAC improved in all groups. Group 1 (Ahlback grades 1,2):89.1% of patients delayed or cancelled knee surgery; 10.9%</td>
<td>None reported</td>
<td>Retrospective cohort study enrolled 2001-2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, Year</td>
<td># patients/ mean age (SD)/ age range/ % female/ mean BMI/ mediating factors</td>
<td>Inclusion criteria/ exclusion criteria</td>
<td>Intervention/ dosing schedule</td>
<td>Outcomes reported/Follow-up times</td>
<td>Efficacy results</td>
<td>AEs results</td>
<td>Conclusions and comments</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--</td>
<td>------------------------------</td>
<td>-----------------------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Waddell, 2006<sup>5th</sup> US</td>
<td>1,047 patients (1,489 knees)/mean age 65.3/60% female 71% grade IV Kellgren-Lawrence</td>
<td>other degenerative arthritis or other joint disease, previous surgery, allergy to avian protein or sodium hyaluronate, any intra-articular treatment within prior 6 months</td>
<td>Hylan GF-20: 3 weekly injections</td>
<td>Pain, mobility, medication, AEs, KR, 26 weeks follow-up</td>
<td>21 patients (2%) underwent KR before the end of the 26-week followup period</td>
<td>49 patients experienced 54 local AEs (pain and swelling). 12 patients experienced severe local pain and swelling. All resolved spontaneously or with aspiration and corticosteroids. AEs did not affect efficacy.</td>
<td>Proportion of patients who underwent KR was low</td>
<td></td>
</tr>
<tr>
<td>Waddell, 2005<sup>5th</sup> US</td>
<td>85 patients (66 completed 26 weeks, 24 completed 104 weeks;)/65.5±11.1 years/64.8% female</td>
<td>Inclusion criteria: healthy, ambulatory men or women aged >40 years; diagnosed with OA (at least 3 months earlier, ACR criteria); WOMAC score ≥2 on pain while</td>
<td>Hylan GF-20: 3 weekly injections</td>
<td>Pain, mobility, medication, AEs, KR (counted as reason for loss to followup), 104 weeks follow-up</td>
<td>At 52 weeks, of 59 remaining patients, 1 patient had undergone KR. No more KRs were reported through 104 weeks.</td>
<td>AEs were reported only as possibly, probably, or definitely treatment-related. 1 patient experienced severe arthropathy. No AE-related discontinuations</td>
<td>Repeated course of HA provided continued pain relief</td>
<td></td>
</tr>
<tr>
<td>Author, Year</td>
<td>Country</td>
<td># patients/ mean age (SD)/age range/ % female/ mean BMI/ mediating factors</td>
<td>Inclusion criteria/ exclusion criteria</td>
<td>Intervention/ dosing schedule</td>
<td>Outcomes reported/Follow-up times</td>
<td>Efficacy results</td>
<td>AEs results</td>
<td>Conclusions and comments</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>walking on a flat surface; a score of 50-90 mm VAS; failure to obtain OA knee pain relief with previous therapy of analgesics or NSAIDs; having received a clinical benefit from an initial course given at least 3 months prior. Exclusion: any serious systemic disease or significant psychiatric or neurological disorder; pregnant or nursing women, or women of childbearing age not using reliable birth control; known allergy to avian products, any components of hyaluronan-based injection devices, or corticosteroid injections; acetaminophen hypersensitivity; or use of an investigational drug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, Year Country</td>
<td># patients/ mean age (SD)/age range/% female/ mean BMI/ mediating factors</td>
<td>Inclusion criteria/ exclusion criteria</td>
<td>Intervention/ dosing schedule</td>
<td>Outcomes reported/Follow-up times</td>
<td>Efficacy results</td>
<td>AEs results</td>
<td>Conclusions and comments</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>--</td>
<td>--------------------------------</td>
<td>----------------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or device within 90 days prior to the study; other joint diseases or conditions; patella femoral knee pain; acute synovitis; palpable effusion at screening or baseline; local AE with first course of hylan G-F 20; history of any joint sepsis; major surgery or arthroscopy in either knee within 6 months before screening or planned during the study; arthroplasty at the target joint; oral or intra-articular corticosteroid or any other intra-articular injection at the target joint within 3 months, or at a non-target joint within 4 weeks of screening; or use of glucosamine or chondroitin sulfate within 30 days prior to study entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, Year</td>
<td>Representativeness</td>
<td>Control for differences</td>
<td>Loss to follow-up</td>
<td>Masking exposures</td>
<td>Ascertainment**</td>
<td>Other treatment modalities</td>
<td>Valid outcomes**</td>
<td>AE collection</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------</td>
<td>-------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Anand, 2010</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>NA</td>
</tr>
<tr>
<td>Barrett, 2002</td>
<td>N</td>
<td>NR</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>NA</td>
</tr>
<tr>
<td>Campbell, 2004</td>
<td>N</td>
<td>NR</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Evanich, 2001</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Jurado, 2013</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>NA</td>
</tr>
<tr>
<td>Korkmaz, 2013</td>
<td>NR</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>NA</td>
</tr>
<tr>
<td>Mazieres, 2007</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>NA</td>
</tr>
<tr>
<td>Neustadt, 2003</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Turajane, 2007</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>NA</td>
</tr>
<tr>
<td>Waddell, 2005</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Waddell, 2006</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Waddell, 2005</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Whitman, 2010</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Table Notes: *See Appendix D for assessment tool. Y=yes (low risk); N=no (high risk); NR=not reported; NA=not applicable; COI conflict of interest; #also includes Turajane, 200754 and 200952; **Ascertainment: Yes indicates the diagnosis and/or treatment outcome were validated by medical report; Validity of outcomes: Yes indicates the outcome measure(s) have been validated for the condition and treatment of interest.
Intra-articular injection of hyaluronic acid and measures of function

We identified 18 randomized trials that compared the effects of HA with placebo or another HA using a validated assessment of function that included the WOMAC, Lequesne Index, ADLs, or IADLs, in individuals with OA of the knee whose average age was 65 or older.

Description of included studies

Of the 18 trials that reported on function as an outcome, sample sizes ranged from 32 to 495. 41, 42, 59-72 73 43 Only a small proportion were US studies; the rest were conducted in Canada, the UK, Germany, France, Denmark, Sweden, Thailand, and Taiwan, and one was a multinational European trial. Of the trials, 11 were compared to a placebo, 41, 60, 62-65, 67, 70, 72, 73 43 six compared two HA devices head to head (one study had both a head-to-head comparison and a placebo group), 59, 61, 67-69, 71 and two studies compared an HA to another active treatment. 42, 66 Two studies conducted followup at 52 weeks, 41, 73 one conducted followup at 4 weeks, 70 one ran for 12 weeks, 69 and the remainder conducted follow-up at 6 months (26 weeks). 42, 59-68, 71, 72, 43 Most studies included Hyalgan, five included Synvisc, and one each included Adant, NRD101 (a medium molecular weight non-avian HA), Orthovisc, Supartz, Suplasyn, and GO-ON.

Nearly all studies reported functional outcomes using either the WOMAC functional domain or Lequesne functional index; one study measured KOOS activities, and one measured ADLs. In order to decide if the Lequesne index was similar enough to the WOMAC for pooling, we looked at 4 trials 61, 66, 67, 69 that reported both outcomes to see if they reached the same conclusions (within trial). Conclusions for three of the four trials were the same for WOMAC and Lequesne. The one the differed 69 had different follow-up times for the WOMAC and Lequesne Index. Thus, we believed that the results of trials that only reported the Lequesne Index could be pooled with those of WOMAC trials. The one trial 59 that reported on ADL/IADLs was deemed different enough from the other functioning outcomes and was not pooled. These studies are described in Table 6 and in the evidence table in Appendix C.

The risk of bias for these RCTs varied widely from 0 to 12 (of 12) indicators of unclear or high risk of bias (Figure 4). The characteristics most often not reported or clearly not considered were allocation concealment and blinding of providers. In addition, although not considered in assessment for risk of bias, almost no studies reported the proportion of participants who responded (reporting only the mean difference in response from baseline).

Key Points

- Our meta-analysis of ten studies that compared the effects of an HA to those of a placebo control showed a significant improvement in WOMAC-assessed function following HA treatment compared to placebo (standardized effect size or standardized mean difference [SMD] -0.23, 95% CI -0.34, -0.02) that did not achieve the MCID (0.37); this effect size corresponds to 4.3 units on a 100mm VAS scale.
- The number of head-to-head trials is too small to be able to assess the relative superiority of one HA over another.
- Although most studies reported findings at 6 months’ follow-up, one study with 4 weeks follow-up and two studies with 52 weeks’ follow-up also reported a positive effect of the device on functional outcomes.
Although no studies assessed the proportion of patients with improved function, seven studies assessed the proportion of patients with patient- or investigator reported global improvement; of the four that were placebo-controlled, three reported significant increases in the proportion of HA-treated patients who improved, compared with the proportion of placebo-treated patients who improved.

No studies assessed the durability of effect.

Detailed Synthesis

Eleven trials presented data comparing the effect of HA on function to that of a sham-injected placebo group with blinded assessment. All but one reported a mean change from baseline or a baseline and follow-up mean by treatment group. Four trials did not report the standard deviation of the mean change, so we estimated it using the standard deviations of the baseline and follow-up mean change. One of these trials also did not report a follow-up standard deviation so it was imputed. We included the WOMAC function scale from 4 trials, Lequesne index from 3 trials and KOOS activities from one trial. One trial reported both the WOMAC and the Lequesne Index. In this case, we used the Lequesne Index, as it provided more data.

Pooled analysis of ten placebo-controlled trials showed a small increase in function for the HA-treated group (standardized effect size or standardized mean difference [SMD] -0.23, 95% CI -0.41, -0.05) at follow-up when using the Dersimonian and Laird random effects method. This finding indicates that those in the HA group had better functioning than those in the placebo group. A repeat of the original meta-analysis using the HKSJ method showed that the effect of HA on function was statistically significant compared with placebo (-0.23, 95% CI -0.45, -0.01). We calculated that the effect size corresponded to an improvement of 8.28 units (on a 0-100 VAS scale) which was smaller than the minimum clinically important difference of 9 units used in a prior systematic review of the effects of HA.

The I² is 54.0%, indicating low to moderate heterogeneity. Both the Begg’s and Egger’s test showed no evidence of publication bias (p=0.245 and p=0.418, respectively). One of the included studies reported a stronger effect for placebo than for the active treatment, and one study showed no effect for either. All but three of the studies reported follow-up at 6 months; sensitivity analyses that excluded all of the studies that reported follow-up sooner (4 weeks) or later (52 weeks) individually did not result in a large difference from our main result (SMD=-0.23 and SMD=-0.25, respectively) (Figure 3). Among the comparisons not included in the meta-analysis, one study compared the effect of Hyalgan to that of placebo using a standard assessment for ADLs. This study found no significant improvement in ADLs at 6 months among the Hyalgan-treated group (SMD -0.08 95% CI -0.57, 0.42).

A study that compared Hyalgan (5 weekly treatments) to placebo as well as to NSAIDs found that Hyalgan significantly improved WOMAC function at 6 months over placebo but no differences were seen between Hyalgan and NSAIDs. This study had a large sample size but a high dropout rate.

Five trials reported function data and compared HA to an active comparator at 26 weeks. Three of these trials had standard deviations imputed. Since the comparator groups were quite heterogeneous, we did not do a meta-analytic pooling.

A multi-site study that compared Hyalgan to a medium-molecular weight device, GO-ON, reported greater improvement in WOMAC-assessed function at 6 months for the GO-ON treated group than for the Hyalgan group (SMD -0.326, 95% CI -0.52, -0.13).
Two studies compared Hyalgan to the high-molecular-weight HA, Synvisc\(^{68,71}\). One very small Thai study reported a significant improvement in WOMAC function for single injections of both devices at 6 months, with no difference between the two (SMD 0.053, 95% CI -0.66, 0.77).\(^{68}\) A much larger UK study that compared five weekly treatments with Hyalgan (the standard dosing schedule) to three weekly treatments with Synvisc reported a significant and much larger effect for Synvisc than for Hyalgan (SMD -0.882, 95%CI -1.09, -0.68) at 6 months.\(^{71}\)

One study compared Synvisc to Sinovial, a medium-molecular weight (800-1200kD) HA of non-avian origin.\(^{69}\) At 12 weeks follow-up, both groups of patients showed the same degree of improvement on the Lequesne index (SMD 0.100, 95%CI -0.11, 0.30). At 6 months’ follow-up, both groups showed a larger improvement in function, this time assessed by the WOMAC function scale, and again, no difference was seen between groups (SMD -0.009 95% CI -0.21, 0.19).

Two studies compared the effects of a HA to that of another active treatment. One small UK study that compared Hyalgan to arthroscopic washout of the affected knee found comparable improvement in function (as assessed by the Lequesne index) for both groups at 6 and 12 months (SMD -0.028 95% CI -0.66, 0.61).\(^{42}\)

One large trial in France compared the effects of a standard dosing schedule of Synvisc with that of conventional treatment (which was not defined by this study, but often indicates a series of treatments of increasing intensity, e.g., NSAIDs and exercise, physical therapy, orthotics, and bracing.\(^{66}\) At 6 months’ follow-up, Synvisc improved function significantly compared with conventional treatment, as assessed with both the WOMAC (SMD -0.567, 95% CI -0.75, -0.39) and the Lequesne index (SMD -0.494, 95% CI -0.67, -0.32).

None of the studies that met inclusion criteria reported the percentage of participants who met prespecified criteria for improvement in function. However, seven studies assessed the proportion of patients with patient- or investigator reported global improvement (according to prespecified criteria).\(^{61,64,66,67,69,72,73}\) Four were placebo-controlled (two others were head-to-head comparisons only, and the remaining study compared HA to conventional treatment);\(^{64,67,72,73}\) Of the four placebo-controlled trials (26-52 weeks in duration), three reported increases in the proportion of HA-treated patients who improved (according to themselves or the investigator), compared with the proportion of placebo-treated patients who improved.\(^{64,67,72}\)

Effect duration could not be derived from the identified studies. As described above, the longest followup point for most of the included studies was 6 months; three studies assessed function at 52 weeks. One study that compared the effects of a course of Hyalgan with that of arthroscopic washout through 52 weeks on Lequesne Index score reported that function at 52 weeks was improved over function at baseline in both groups, that function appeared to be continuing to improve at 52 weeks in both groups, and that improvement was not significantly different in the HA-treated group than in the group that underwent washout.\(^{42}\) A study that compared the effect of Hyalectin to that of a saline placebo at 7 weeks and 52 weeks after initiation of treatment, showed that Lequesne Index scores continued to improve through 12 months in both groups but that improvement was significantly greater in the Hyalectin group (p=0.03).\(^{41}\) Finally, a third study compared the effects of Hylan G-F 20 (Synvisc) with that of a lower molecular weight preparation of HA on WOMAC function scores over 52 weeks: Hylan-G-F 20 recipients showed comparable improvement in WOMAC scores from 3 months through 12 months, whereas HA showed a significant improvement only at 3 months.\(^{71}\)
<table>
<thead>
<tr>
<th>Author, Year Location</th>
<th># Patients (Knees)/ Mean Age (SD)/ Age Range/% Female</th>
<th>Comorbidities</th>
<th>Study Arms</th>
<th>Relevant Outcomes Reported/ Follow Up Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altman et al., 1998</td>
<td>495(NR) Mean age: 64 (10 (whole group)) % Female: 57</td>
<td>NR</td>
<td>Arm 1: N = 115 Mean age: 65 (10) Placebo/sham Acetaminophen up to 4000mg /day permitted as rescue</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arm 2: N = 105 Mean age: 62(10) Hyalgan 20mg/2ml Molecular weight: 500-730kD Oral placebo for naproxen twice daily and Acetaminophen up to 4000mg /day permitted as rescue</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arm 3: N = 113 Mean age: 63(9) NSAID Total treatments: 5 Time between treatment: 1 week</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WOMAC physical function (Follow up time: 26 weeks) Arm 1: Placebo, N=115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arm 2: Hyalgan 20mg/2ml 500-730kD, N=105</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arm 3: NSAIDs, N=113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Study-level: WOMAC physical function HA group improvement more than placebo group p=0.047</td>
</tr>
<tr>
<td>Author, Year Location</td>
<td># Patients (Knees)/ Mean Age (SD)/ Age Range/% Female</td>
<td>Comorbidities</td>
<td>Study Arms</td>
<td>Relevant Outcomes Reported/ Follow Up Times</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Berenbaum et al., 2012<sup>1</sup> France, Germany</td>
<td>426(NR)</td>
<td>Mean age: 67 (NR) % Female: 63</td>
<td>Arm 1: N = 209 Mean age: 66.1 (8.1) Hyalgan Molecular weight: 500 kD-730 kD NSAID or paracetamol up to 4g/d as permitted as rescue medication Arm 2: N = 217 Mean age: 67.2 (7.8) GO-ON (2.5 ml, 10mg/ml) Molecular weight: 800 kD-1500 kD NSAID or paracetamol up to 4g/d as permitted as rescue medication Total treatments: 3 Time between treatment: 3 weeks</td>
<td>Arm 1: Hyalgan 500 kD-730 kD, N=209 Mean change from baseline: -3 (3.7) Arm 2: GO-ON (2.5 ml, 10mg/ml) 800 kD-1500 kD, N=217 Mean change from baseline: -4.2 (3.8) WOMAC function (Follow up time: 26 weeks) Arm 1: Hyalgan 500 kD-730 kD, N=209 Mean change from baseline: -15.4 (19.9) Arm 2: GO-ON (2.5 ml, 10mg/ml) 800 kD-1500 kD, N=217 Mean change from baseline: -22.2 (21.8) Study-level: WOMAC function Standard mean difference: -0.326 (-0.52, -0.13) Lequesne index Standard mean difference: -0.320 (-0.51, -0.13)</td>
</tr>
</tbody>
</table>

1. Lequesne index (Follow up time: 26 weeks)
<table>
<thead>
<tr>
<th>Author, Year Location</th>
<th># Patients (Knees)/ Mean Age (SD)/ Age Range/% Female</th>
<th>Comorbidities</th>
<th>Study Arms</th>
<th>Relevant Outcomes Reported/ Follow Up Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanco et al., 2008<sup>33</sup> Spain</td>
<td>42</td>
<td>NR</td>
<td>Arm 1: N = 20, Mean age: 68.3 (9.1) Placebo/sham Paracetamol and/or dicofenac as rescue analgesics
Arm 2: N = 22, Mean age: 67.5 (8.1) Adant Molecular weight: 900 kDa Total treatments: 10 (2 cycles of 5 weekly injections, separated by 24 weeks) Time between treatment: 1 week</td>
<td>Number of patients with knee surgery (Follow up time: 24 weeks)
Arm 1: Placebo, N=23 Count = 20 (87%)
Arm 2: Adant 900 kDa, N=25 Count = 16 (64%)
Physical function WOMAC (Follow up time: 24 weeks)
Arm 1: Placebo, N=20 Mean change from baseline: -4.4 (18.8)
Arm 2: Adant 900 kDa, N=22 Mean change from baseline: -24.7 (18)
Study-level:
Physical function WOMAC Standard mean difference: -1.080 (-1.74, -0.43)
Number of patients with knee surgery OR: 0.300 (0.08, 1.10)</td>
</tr>
<tr>
<td>Brandt et al., 2001<sup>32</sup> US</td>
<td>226(NR), Mean age: NR (NR) % Female: 63</td>
<td>Involvement of both knees: HA: 78% Saline: 88%</td>
<td>Arm 1: N = 112, Mean age: 67(8.4) Placebo/sham
Arm 2: N = 114, Mean age: 65(8.4) Orthovisc (2 mL, 15mg/mL) Molecular weight: 1000-2900 kD (considered high MW) Total treatments: 3 Time between treatment: 1 week</td>
<td>WOMAC function (Follow up time: 27 weeks)
Arm 1: Placebo, N=69 Mean change from baseline: -9.8 (15.1)
Arm 2: Orthovisc (2 mL, 15mg/mL) 1000-2900 kD (considered high MW), N=66 Mean change from baseline: -14.7 (15.1)
Study-level:
WOMAC function Standard mean difference: -0.323 (-0.66, 0.02)</td>
</tr>
<tr>
<td>Author, Year Location</td>
<td># Patients (Knees)/ Mean Age (SD)/ Age Range/% Female</td>
<td>Comorbidities</td>
<td>Study Arms</td>
<td>Relevant Outcomes Reported/ Follow Up Times</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>---------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>DeCaria et al., 201263 Ontario Canada</td>
<td>30(na) Mean age: NR (NR) % Female: 47</td>
<td>NR</td>
<td>Arm 1: N = 15 Mean age: 72.93 (5.48) 500 mg acetaminophen to be taken up to 4g/day as rescue medication Placebo/sham 1.2 ml 0.001 mg/ml inert HA Arm 2: N=15 Hyaluronic acid (2 ml, 20 mg/ml) Molecular weight: 730 kD 500 mg acetaminophen to be taken up to 4g/day as rescue medication Total treatments: 3 Time between treatment: 1 week</td>
<td>WOMAC function (Follow up time: 26 weeks) Arm 1: Placebo, N=15 Mean change from baseline: -3.53 (10.15) Arm 2: Hyaluronic Acid 730 kD, N=15 Mean change from baseline: -9.07 (8.14) Study-level: WOMAC function Standard mean difference: -0.586 (-1.32, 0.15)</td>
</tr>
<tr>
<td>Dixon et al., 198859 UK</td>
<td>63(NR) Mean age: 68.5 (NR) % Female: 54</td>
<td>NR</td>
<td>Arm 1: N = 33 Mean age: nr Hyalgan 0.2mg/2 ml Molecular weight: NR Placebo/sham Arm 2: N = 30 Mean age: nr Hyalgan 20mg/2 ml Molecular weight: NR Paracetamol was permitted but NSAIDS, corticosteroids, and strong analgesics were not Total treatments: Varied 1 for first 3 weeks and then 2</td>
<td>ADL/IDLS (Follow up time: 25 weeks) Arm 1: Hyalgan 0.2mg/2 ml, N=33 Mean change from baseline: -1 (10.5) * Arm 2: Hyalgan 20mg/2 ml, N=30 Mean change from baseline: -1.8 (10.5) * Study-level: ADL/IDLS Standard mean difference: -0.076 (-0.57, 0.42)</td>
</tr>
<tr>
<td>Author, Year Location</td>
<td># Patients (Knees)/Mean Age (SD)/Age Range/% Female</td>
<td>Comorbidities</td>
<td>Study Arms</td>
<td>Relevant Outcomes Reported/Follow Up Times</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>---------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Dougados et al., 1993<sup>1</sup> France</td>
<td>110 Mean age: 69.0 (10.6) % Female: 71.0</td>
<td>NR</td>
<td>Arm 1: N=55 Placebo/sham Arm 2: N=55 Hyalectin (Hyalgan) Molecular weight: 500-730 kDa Total treatments: 4 Time between treatment: 1 week</td>
<td>Lequesne index (Follow up time: 52 weeks) Arm 1: Placebo, N=48 Mean change from baseline: -2.7 (4.1) Arm 2: Hyalgan 500-730 kDa, N=47 Mean change from baseline: -4.4 (5.1) Number of patients with arthroscopy (Follow up time: 52 weeks) Arm 1: Placebo, N=48 Count = 5 (10.4%) Arm 2: Hylagan 500-730 kDa, N=47 Count = 2 (4.3%) Study-level: Lequesne index Standard mean difference: -0.360 (-0.77, 0.04) Number of patients with arthroscopy OR: 0.409 (0.08, 1.89)</td>
</tr>
<tr>
<td>Author, Year Location</td>
<td># Patients (Knees)/ Mean Age (SD)/ Age Range/% Female</td>
<td>Comorbidities</td>
<td>Study Arms</td>
<td>Relevant Outcomes Reported/ Follow Up Times</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Forster et al., 2003[^2] UK</td>
<td>38 Mean age: 61.5 (NR) % Female: NR</td>
<td>NR</td>
<td>Arm 1: N = 19 Mean age: 63 Arthroscopic washout Arm 2: N = 19 Mean age: 60 Hyalgan Molecular weight: 500-730 kD Total treatments: 5 Time between treatment: 1 week</td>
<td>Lequesne index (Follow up time: 26 weeks) Arm 1: Arthroscopic washout, N=19 Mean change from baseline: -1 (25) *</td>
</tr>
<tr>
<td>Grecomoro et al., 1987[^4] Italy</td>
<td>34(40) Mean age: 64.88 (10.94) % Female: 19/34</td>
<td>Involvement of both knees: 6/34</td>
<td>Arm 1: N = 20 knees Mean age: NR Placebo/sham Arm 2: N = 20 knees Mean age: NR Hyalgan Molecular weight: 500K-750K Total treatments: 3 Time between treatment: 1 week</td>
<td></td>
</tr>
<tr>
<td>Author, Year Location</td>
<td># Patients (Knees)/ Mean Age (SD)/ Age Range/% Female</td>
<td>Comorbidities</td>
<td>Study Arms</td>
<td>Relevant Outcomes Reported/ Follow Up Times</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---------------</td>
<td>------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Henderson et al., 1994³³ UK | 91(NR) | Involvement of both knees: >99% | Arm 1: N = 20 (Severity group I) Mean age: 60.0(1.9) Placebo/sham
Arm 2: N = 26 Severity Group 2 Second placebo group
Arm 3: N = 18 Severity Group 1 Mean age: 63.9(1.9) Hyalgan (20mg/2mL) Molecular weight: NR
Arm 4: N = 26 Severity Group 2 Mean age: 67.0(1.7) Hyalgan
Total treatments: 5
Time between treatment: 1 week | WOMAC function (Follow up time: 25 weeks)
Arm 1: Placebo, N=98
Mean change from baseline: -18.2 (16.7)
Arm 2: Hyalgan (20mg/2ml), N=100
Mean change from baseline: -25.16 (16.7)
Study-level: WOMAC function
Standard mean difference: -0.415 (-0.70, -0.13) |
| Huang et al., 2011³⁴ Taiwan | 200(NR) | NR | Arm 1: N = 100
Mean age: 64.2(8.4)
Placebo/sham
Arm 2: N = 100
Mean age: 65.9(8.1)
Hyalgan (20mg/2mL)
Total treatments: 5
Time between treatment: 1 week | WOMAC function (Follow up time: 25 weeks)
Arm 1: Placebo, N=98
Mean change from baseline: -18.2 (16.7)
Arm 2: Hyalgan (20mg/2ml), N=100
Mean change from baseline: -25.16 (16.7)
Study-level: WOMAC function
Standard mean difference: -0.415 (-0.70, -0.13) |
<table>
<thead>
<tr>
<th>Author, Year Location</th>
<th># Patients (Knees)/Mean Age (SD)/Age Range/% Female</th>
<th>Comorbidities</th>
<th>Study Arms</th>
<th>Relevant Outcomes Reported/Follow Up Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huskisson et al., 1999<sup>65</sup> United Kingdom</td>
<td>100(NR)</td>
<td></td>
<td>Arm 1: N = 50 Mean age: 64.8 (9.3) Placebo/sham Arm 2: N = 50 Mean age: 65.8 (8.8) Hyalgan Molecular weight: 500-730 kDa Total treatments: 5 Time between treatment: 1 week</td>
<td>Lequesne functional index (Follow up time: 26 weeks) Arm 1: Placebo, N=41 Mean change from baseline: -1.4 (7.8) Arm 2: Hyalgan 500-730 kDa, N=40 Mean change from baseline: -2.2 (7.9) Study-level: Lequesne functional index Standard mean difference: -0.101 (-0.54, 0.34)</td>
</tr>
<tr>
<td>Kahan et al., 2003<sup>66</sup> France</td>
<td>506</td>
<td></td>
<td>Arm 1: N = 253 Mean age: 66 (10) Conventional treatment Arm 2: N = 253 Mean age: 66 (10) Synvisc Molecular weight: NR Total treatments: 3 Time between treatment: 1 week</td>
<td>Lequesne index (Follow up time: 26 weeks) Arm 1: Conventional treatment, N=253 Mean change from baseline: -1.6 (4) Arm 2: Synvisc, N=253 Mean change from baseline: -3.6 (4.1) WOMAC function (Follow up time: 26 weeks) Arm 1: Conventional treatment, N=247 Mean change from baseline: -7 (20.6) Arm 2: Synvisc, N=251 Mean change from baseline: -18.4 (19.6) Study-level: Lequesne index Standard mean difference: -0.494 (-0.67, -0.32) WOMAC function Standard mean difference: -0.567 (-0.75, -0.39)</td>
</tr>
<tr>
<td>Author, Year Location</td>
<td># Patients (Knees)/ Mean Age (SD)/ Age Range/% Female</td>
<td>Comorbidities</td>
<td>Study Arms</td>
<td>Relevant Outcomes Reported/ Follow Up Times</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>---------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Karlsson et al., 2002</td>
<td>246(NR)</td>
<td>NR</td>
<td>Arm 1: N = 66 (57 PP) Mean age: 71(6) Placebo/sham</td>
<td>Lequesne algofunctional index (Follow up time: 26 weeks) Arm 1: Placebo, N=57 Mean change from baseline: -4.7 (4.4)</td>
</tr>
<tr>
<td>Sweden</td>
<td>Mean age: reported by arm below (reported by arm below) % Female: 61</td>
<td>Arm 2: N = 92 (76 PP) Mean age: 72(7) Artzal (2.5 ml 1% hyaluronan) Molecular weight: 1,000 kDa</td>
<td>Arm 2: Artzal (2.5 ml 1% hyaluronan) 1,000 kDa, N=76 Mean change from baseline: -3.9 (4.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arm 3: N = 88 (77 PP) Mean age: 70(7) Synvisc (2 ml 0.8%) Molecular weight: 7,000 kDa</td>
<td>Arm 3: Synvisc (2 ml 0.8%) 7,000 kDa, N=77 Mean change from baseline: -4.4 (4.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total treatments: 3 Time between treatment: 1 day</td>
<td>WOMAC physical function (Follow up time: 26 weeks) Arm 1: Placebo, N=57 Mean change from baseline: -11.1 (14.8) *</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arm 2: Artzal (2.5 ml 1% hyaluronan) 1,000 kDa, N=76 Mean change from baseline: -7.3 (14.9) *</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arm 3: Synvisc (2 ml 0.8%) 7,000 kDa, N=77 Mean change from baseline: -11.7 (14.7) *</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study-level: WOMAC physical function Standard mean difference: 0.260 (-0.09, 0.60) Arms 2 vs 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WOMAC physical function Standard mean difference: -0.297 (-0.62, 0.02) Arms 3 vs 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lequesne algofunctional index Standard mean difference: 0.176 (-0.17, 0.52) Arms 2 vs 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lequesne algofunctional index Standard mean difference: -0.115 (-0.43, 0.20) Arms 3 vs 2</td>
<td></td>
</tr>
<tr>
<td>Author, Year Location</td>
<td># Patients (Knees)/ Mean Age (SD)/ Age Range/% Female</td>
<td>Comorbidities</td>
<td>Study Arms</td>
<td>Relevant Outcomes Reported/Follow Up Times</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---------------</td>
<td>------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Khanasuk et al., 2012 Thailand | 32(NR)
Mean age: NR (NR)
% Female: 80 | NR | Arm 1:
N = 15
Mean age: 65.1(9.6)
Hylan GF-20 (Synvisc)(single 6 ml injection)
Molecular weight: Reported as High
Arm 2:
N = 15
Mean age: 67.0(9.5)
Hyalgan (single injection)
Molecular weight: Reported as Low
Total treatments: 1 | SF-36 PCS (Follow up time: 26 weeks)
Arm 1: Synvisc (single 6 ml injection), N=15
Mean change from baseline: -6 (25) *
Arm 2: Hyalgan (single injection, N=15
Mean change from baseline: -4 (25) *
WOMAC function (Follow up time: 26 weeks)
Arm 1: Synvisc (single 6 ml injection) Reported as High, N=15
Mean change from baseline: -20 (37.5) *
Arm 2: Hyalgan (single injection Reported as Low, N=15
Mean change from baseline: -22 (37.5) *
Study-level:
WOMAC function
Standard mean difference: 0.053 (-0.66, 0.77)
SF-36 PCS
Standard mean difference: -0.080 (-0.80, 0.64) |
| Leopold et al., 2003 US | 100(NR)
Mean age: NR (NR)
% Female: CS: 56 HA: 52 | NR | Arm 1:
N = 42
Mean age: 64
Arm 2:
N = 38
Mean age: 66
Hylan G-F 20 (16mg/2ml)
Total treatments: 3 HA 1CS
Time between treatment: 1 week |
<table>
<thead>
<tr>
<th>Author, Year Location</th>
<th># Patients (Knees)/ Mean Age (SD)/ Age Range/% Female</th>
<th>Comorbidities</th>
<th>Study Arms</th>
<th>Relevant Outcomes Reported/ Follow Up Times</th>
</tr>
</thead>
</table>
| Lundsgaard et al., 2008\(^2\)
Denmark | 251
Mean age: 69.6 (7.27)
% Female: 52.4 | NR | Arm 1:
N=84
Saline 2ml
Arm 2:
N=83
Saline 20 mL, no hyaluronate
Arm 3:
N=84
Hyalgan
Molecular weight: NR
Total treatments: 4
Time between treatment: 1 week | KOOS activities (Follow up time: 26 weeks)
Arm 1: Saline 2ml, N=84
Mean change from baseline: -5 (16.3)
Arm 2: Saline 20 mL, no hyaluronate, N=83
Mean change from baseline: -5.2 (15.1)
Arm 3: Hyalgan 500 - 730 kD, N=84
Mean change from baseline: -4.4 (15.7)
KOOS quality of life (Follow up time: 26 weeks)
Arm 1: Saline 2ml, N=84
Mean change from baseline: -6.4 (15.7)
Arm 2: Saline 20 mL, no hyaluronate, N=83
Mean change from baseline: -7.1 (12.1)
Arm 3: Hyalgan 500 - 730 kD, N=84
Mean change from baseline: -3.4 (15.4)
Study-level:
KOOS activities
Standard mean difference: 0.037 (-0.27, 0.34)
KOOS quality of life
Standard mean difference: -0.193 (-0.50, 0.11) |
<table>
<thead>
<tr>
<th>Author, Year Location</th>
<th># Patients (Knees)/Mean Age (SD)/Age Range/% Female</th>
<th>Comorbidities</th>
<th>Study Arms</th>
<th>Relevant Outcomes Reported/Follow Up Times</th>
</tr>
</thead>
</table>
| Pavelka et al., 2011 | 381 | Involvement of both knees: 66% | Arm 1: N = 192
Mean age: 65.1 (9.1)
Synovial
Molecular weight: 800 - 1,200 kD
Arm 2: N = 188
Mean age: 64.9
Synvisc
Molecular weight: 6,000 kD | Lequesne algofunctional index (Follow up time: 12 weeks)
Arm 1: Synovial 800 - 1,200 kD, N=192
Mean change from baseline: -3.9 (5.2)
Arm 2: Synvisc 6,000 kD, N=188
Mean change from baseline: -3.4 (5.2) |
| | Czech Republic, France, Italy, Switzerland, the Slovak Republic and Germany | Mean age: 65 (9)
% Female: 72.9 | Total treatments: 3
Time between treatment: 1 week | WOMAC function (Follow up time: 26 weeks)
Arm 1: Sinovial 800 - 1,200 kD, N=192
Mean change from baseline: -28 (21.8) *
Arm 2: Synvisc 6,000 kD, N=188
Mean change from baseline: -28.2 (21.7) * |
| | | | Study-level:
WOMAC function
Standard mean difference: -0.009 (-0.21, 0.19)
Lequesne algofunctional index
Standard mean difference: 0.100 (-0.11, 0.30) |
<table>
<thead>
<tr>
<th>Author, Year Location</th>
<th># Patients (Knees)/ Mean Age (SD)/ Age Range/% Female</th>
<th>Comorbidities</th>
<th>Study Arms</th>
<th>Relevant Outcomes Reported/ Follow Up Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrella et al., 2002<sup>70</sup> Canada</td>
<td>120 Mean age: 65.5 (9.5) % Female: 45.8</td>
<td>Involvement of both knees: 0%</td>
<td>Arm 1: N = 28 Mean age: 62.6 (9.5) Placebo/sham Arm 2: N = 25 Mean age: 67.3 (8.9) Suplasyn Molecular weight: NR Placebo pill Arm 3: N = 29 Mean age: 65.0 (9.7) Suplasyn Molecular weight: NR NSAID Arm 4: N = 26 Mean age: 66.3 (8.8) NSAID Total treatments: 3 Time between treatment: 1 week</td>
<td>WOMAC disability (Follow up time: 4 weeks) Arm 1: Placebo, N=28 Mean change from baseline: -0.99 (3) Arm 2: Suplasyn NR, N=25 Mean change from baseline: -1.65 (2.5) Arm 3: Suplasyn+NSAIDs NR, N=29 Mean change from baseline: -1.17 (2.7) Arm 4: NSAIDs, N=26 Mean change from baseline: -1.56 (2.8) Study-level: WOMAC disability Standard mean difference: -0.234 (-0.77, 0.31)</td>
</tr>
<tr>
<td>Author, Year Location</td>
<td># Patients (Knees)/ Mean Age (SD)/ Age Range/% Female</td>
<td>Comorbidities</td>
<td>Study Arms</td>
<td>Relevant Outcomes Reported/ Follow Up Times</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---------------</td>
<td>------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Petrella et al., 2008 Canada | 200
Mean age: 71 (8)
% Female: 30 | NR | Arm 1:
N = 50
Mean age: 71+/8
Placebo/sham
Arm 2:
N = 50
Mean age: 68+/6
HA dual molecular weight
Molecular weight: 580–780 kDa+1.2 to 2.0 million kDa
Arm 3:
N = 50
Mean age: 69+/5
HA low molecular weight
Molecular weight: 500–730 kDa
Arm 4:
N = 50
Mean age: 71+/9
HA high molecular weight
Molecular weight: 6 million kDa
Total treatments: 3
Time between treatment: 1 week |
<table>
<thead>
<tr>
<th>Author, Year Location</th>
<th># Patients (Knees)/ Mean Age (SD)/ Age Range/% Female</th>
<th>Comorbidities</th>
<th>Study Arms</th>
<th>Relevant Outcomes Reported/ Follow Up Times</th>
</tr>
</thead>
</table>
| Petrella et al., 2011 Canada | 200
Mean age: 70 (8)
% Female: 57 | NR | Arm 1:
N = 50
Mean age: 71 (8)
Placebo/sham
Arm 2:
N = 50
Mean age: 68 (6)
sodium hyaluronate
Molecular weight: Combined high & low weight
Arm 3:
N = 50
Mean age: 69 (5)
sodium hyaluronate - low weight
Molecular weight: 500-730 KDa
Arm 4:
N = 50
Mean age: 71 (9)
sodium hyaluronate - high weight
Molecular weight: 6000 KDa
Total treatments: 3
Time between treatment: 1 week | | | |
<table>
<thead>
<tr>
<th>Author, Year Location</th>
<th># Patients (Knees)/Mean Age (SD)/Age Range/% Female</th>
<th>Comorbidities</th>
<th>Study Arms</th>
<th>Relevant Outcomes Reported/Follow Up Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pham et al., 2004<sup>73</sup> France</td>
<td>301 Mean age: 64.9 (7.7) % Female: 65 average</td>
<td>NR</td>
<td>Arm 1: N = 85 Mean age: 64.9 (7.7) Placebo/sham Arm 2: N = 131 Mean age: 71.0 NRD101 Molecular weight: 1.900 kDa Arm 3: N = 85 Mean age: 64.5 Diacerein Total treatments: 12? (3 course every 3 months for a year) Time between treatment: 1 week</td>
<td>Lequesne’s algofunctional index (Follow up time: 52 weeks) Arm 1: Oral placebo+saline, N=85 Mean change from baseline: 10.5 (3.1) Arm 3: NRD101 1.900 kDa, N=131 Mean change from baseline: 11.1 (2.8) Study-level: Lequesne’s algofunctional index Standard mean difference: -0.070 (-0.34, 0.21)</td>
</tr>
<tr>
<td>Raman et al., 2008<sup>71</sup> UK</td>
<td>392 Mean age: 67.2 (NR) % Female: 68</td>
<td>NR</td>
<td>Arm 1: N = 199 Mean age: NR Synvisc (Hylan GF 20) Molecular weight: 6000 kD Arm 2: N = 193 Mean age: NR Hyalgan Molecular weight: 500 - 730 kDa Total treatments: 3 for Synvisc, 5 for Hyalgan Time between treatment: 1 week</td>
<td>EQ-5D (Follow up time: 26 weeks) Arm 1: Synvisc (Hylan GF 20) 6000 kD, N=199 Mean change from baseline: -12 (25) * Arm 2: Hyalgan 500 - 730 kD, N=193 Mean change from baseline: 1 (25) * WOMAC physical activity (Follow up time: 26 weeks) Arm 1: Synvisc (Hylan GF 20) 6000 kD, N=199 Mean change from baseline: -21.8 (17) * Arm 2: Hyalgan 500 - 730 kD, N=193 Mean change from baseline: -6.8 (17) * Study-level: WOMAC physical activity Standard mean difference: -0.882 (-1.09, -0.68) EQ-5D Standard mean difference: -0.520 (-0.72, -0.32)</td>
</tr>
<tr>
<td>Author, Year Location</td>
<td># Patients (Knees) / Mean Age (SD) / Age Range / % Female</td>
<td>Comorbidities</td>
<td>Study Arms</td>
<td>Relevant Outcomes Reported / Follow Up Times</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>--------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Roman et al., 2000</td>
<td>49</td>
<td>NR</td>
<td>Arm 1: N = 30 Mean age: NR Adant Molecular weight: 900 kD Arm 2: N = 19 Mean age: NR Hyalgan Molecular weight: 800 kD Total treatments: 5 Time between treatment: 1 week</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>Mean age: 65.14 (9.77) % Female: 83.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamir et al., 2001</td>
<td>49</td>
<td>NR</td>
<td>Arm 1: N = 24 Mean age: 70 Placebo/sham Arm 2: N = 25 Mean age: 71 Bio-Hy Molecular weight: 3000 kDa Total treatments: 5 Time between treatment: 1 week</td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>Mean age: 71 (NR) % Female: 73.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3. Forest Plot for Comparisons of the Effect of Hyaluronic Acid Treatment with Placebo on function (WOMAC, Lequesne, or KOOS) at 26 Weeks Follow-up*

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Treatment</th>
<th>Treatment MW</th>
<th>Weight</th>
<th>SMD (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bianco, 2008</td>
<td>Adiant</td>
<td>900 kDa</td>
<td></td>
<td>-1.06 (-1.74, -0.43)</td>
</tr>
<tr>
<td>Brandt, 2001</td>
<td>Orthovisc (2 mL, 15mg/mL)</td>
<td>1000-2900 kDa (considered high MW)</td>
<td></td>
<td>-0.32 (-0.66, 0.02)</td>
</tr>
<tr>
<td>DeCaria, 2012</td>
<td>Hyaluronic Acid</td>
<td>730 kDa</td>
<td></td>
<td>-0.59 (-1.32, 0.15)</td>
</tr>
<tr>
<td>Dougados, 1993</td>
<td>Hyalgan</td>
<td>500-730 kDa</td>
<td></td>
<td>-0.36 (-0.77, 0.04)</td>
</tr>
<tr>
<td>Huang, 2011</td>
<td>Hyalgan (20mg/2ml)</td>
<td>500-730 kDa</td>
<td></td>
<td>-0.42 (-0.70, -0.13)</td>
</tr>
<tr>
<td>Hedstrom, 1999</td>
<td>Hyalgan</td>
<td>500-730 kDa</td>
<td></td>
<td>-0.10 (-0.54, 0.33)</td>
</tr>
<tr>
<td>Karlsson, 2002</td>
<td>Artzal (2.5 ml 1% hyaluronate)</td>
<td>1,000 kDa</td>
<td></td>
<td>0.18 (-0.17, 0.52)</td>
</tr>
<tr>
<td>Lundsgaard, 2006</td>
<td>Hyalgan</td>
<td>500 - 730 kDa</td>
<td></td>
<td>0.04 (-0.27, 0.34)</td>
</tr>
<tr>
<td>Petrella, 2002</td>
<td>Suplasyn</td>
<td>NR</td>
<td></td>
<td>-0.23 (-0.77, 0.31)</td>
</tr>
<tr>
<td>Pham, 2004</td>
<td>NRD101</td>
<td>1,900 kDa</td>
<td></td>
<td>-0.67 (-0.34, 0.21)</td>
</tr>
<tr>
<td>Overall (I-squared = 54.0%, p = 0.021)</td>
<td></td>
<td></td>
<td></td>
<td>-0.23 (-0.45, -0.01)</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis

*Follow-up time for Petrella is 4 weeks and for Dougados and Pham it is 52 weeks
Figure 4. Risk of Bias Assessment on Randomized Controlled Trials

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Random sequence generation (selection bias)</th>
<th>Allocation concealment (selection bias)</th>
<th>Blinding of participants</th>
<th>Blinding of outcome assessment</th>
<th>Incomplete outcome data (attrition bias)</th>
<th>Selective reporting (reporting bias)</th>
<th>Other sources of bias (differential measurement of outcome)</th>
<th>Other sources of bias (bias in outcomes)</th>
<th>Other sources of bias (other)</th>
<th>Complete outcome data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altman et al. 1998</td>
<td>🔴</td>
</tr>
<tr>
<td>Berenbaum et al. 2012</td>
<td>🔴</td>
</tr>
<tr>
<td>Blich et al. 2011</td>
<td>🔴</td>
</tr>
<tr>
<td>Brandt et al. 2012</td>
<td>🔴</td>
</tr>
<tr>
<td>DeCarr et al. 2012</td>
<td>🔴</td>
</tr>
<tr>
<td>DeVon et al. 1998</td>
<td>🔴</td>
</tr>
<tr>
<td>Dougados et al. 1993</td>
<td>🔴</td>
</tr>
<tr>
<td>Facetti et al. 2003</td>
<td>🔴</td>
</tr>
<tr>
<td>Haggard et al. 1994</td>
<td>🔴</td>
</tr>
<tr>
<td>Huang et al. 2011</td>
<td>🔴</td>
</tr>
<tr>
<td>Hughes et al. 1999</td>
<td>🔴</td>
</tr>
<tr>
<td>Kahan et al. 2003</td>
<td>🔴</td>
</tr>
<tr>
<td>Karlsson et al. 2002</td>
<td>🔴</td>
</tr>
<tr>
<td>Kranz et al. 2011</td>
<td>🔴</td>
</tr>
<tr>
<td>Lepold et al. 2003</td>
<td>🔴</td>
</tr>
<tr>
<td>Landgärden et al. 2008</td>
<td>🔴</td>
</tr>
<tr>
<td>Pavolka et al. 2011</td>
<td>🔴</td>
</tr>
<tr>
<td>Petrucci et al. 2004</td>
<td>🔴</td>
</tr>
<tr>
<td>Petrucci et al. 2002</td>
<td>🔴</td>
</tr>
<tr>
<td>Petrucci et al. 2011</td>
<td>🔴</td>
</tr>
<tr>
<td>Raman et al. 2003</td>
<td>🔴</td>
</tr>
<tr>
<td>Ronan et al. 2000</td>
<td>🔴</td>
</tr>
<tr>
<td>Tamir et al. 2001</td>
<td>🔴</td>
</tr>
</tbody>
</table>

Legend:

- **Unclear**: 🔴
- **Low risk of bias**: 🔴
- **High risk of bias**: 🔴

52
Intra-articular injection of hyaluronic acid and quality of life

Three randomized trials were identified that assessed quality of life.

Description of included studies

A 2008 randomized trial that compared treatment with Hyalgan to treatment with two different volumes of saline assessed quality of life using the KOOS quality-of-life component. A head-to-head trial that compared Synvisc with Hyalgan assessed quality of life using the SF-36 mental component summary, and a second head-to-head trial that compared Synvisc with Hyalgan assessed health-related quality of life using the EuroQol-5D index.

Key Points

- Three trials that compared HA to saline or to another HA found no differences in quality of life or health-related quality of life between the two groups at 6 months follow-up.
- In one head-to-head trial of Synvisc and Hyalgan, health-related quality of life was improved in the Synvisc group from 3 weeks through the final follow-up at 12 months post-treatment.

Detailed Synthesis

Two trials that compared Hyalgan to Synvisc and one trial that compared Hyalgan to saline reported on quality of life or health-related quality of life. All three needed to have standard deviations imputed. A meta-analytic pooling was not done since we did not have three trials with similar comparisons.

A 2008 randomized placebo-controlled trial of Hyalgan in 251 Danish adults (mean age 69, minimum age 59) assessed quality of life with the KOOS measure. No significant improvement was seen at 6 months compared with baseline, and there was no difference among the groups (-0.193 95% CI -0.496, 0.110), as was seen for the assessment of KOOS function.

A 2008 UK head-to-head trial comparing Hyalgan with Hylan GF-20 (Synvisc) in 393 OA patients found a significant increase in health-related quality of life at 3 months, as measured by the EuroQol EQ-5D, which was greater for the Hylan GF-20 group (-0.52 95% CI -0.72, -0.32), paralleling the WOMAC physical activity subscores, as reported above; the effect on EQ-5D score was sustained until 12 months in the Synvisc group but not the HA group. However a small 2012 trial in Thailand that compared the same devices among 32 patients found no improvement in quality of life in either group, as measured by the SF-36, (-0.08 95% CI -0.80, 0.64) (compared with WOMAC physical function scores, which improved equally in both groups).

None of the three studies conducted subgroup analysis to assess possible contributing factors (such as age, disease severity, or comorbidities) to the response of quality of life to treatment with HA.
Intra-articular injection of hyaluronic acid and pain

Description of included studies

We identified six articles published in 2012 and 2013 described as systematic reviews that summarized trials of the effects of HA on pain.13, 14, 81-84 One good quality 2012 review summarized the entire body of trials that compared the effects of HA with those of a sham or nonintervention control on pain; this review also included separate analysis for double-blind placebo control trials and stratified analyses for a number of potential effect modifiers. We summarize the results of this review below. We identified no double-blind placebo controlled randomized trials that reported the effects of HA on pain in individuals of average age 65 and over that were published subsequent to this systematic review; however we did identify two randomized head-to-head trials that compared the effects of two different HA products on pain in individuals of average 65 or over. These two studies are summarized below.

Key Points

- A large, comprehensive systematic review of RCTs that assessed the effects of HA on pain in 71 RCTs (with either sham or non-sham controls) reported that HA injections significantly reduce pain when assessed at 3 months (-0.37, 95% CI -0.46, -0.28) and the effect met the criterion for a minimum clinically important difference (MCID, -0.37, which corresponds to 9 mm on a VAS scale of 0 to 100mm);
- When the reviewers performed a subgroup analysis that included only the 18 sham-controlled, assessor-blinded studies of sample size 100 or more per intervention group, the effect of HA was still statistically significant (-0.11, 95%CI -0.18, -0.04) but no longer met the criterion for a MCID. When the reviewers conducted a stratified analysis to compare the effect size for the 54 studies with a sham control with that of 18 studies with a non-sham intervention, the pooled effect size for studies with a sham control was -0.34 (95% CI -0.44, -0.24), nearly equal to that for the 71 studies and to the MCID.
- No new placebo-controlled trials were identified that were not already included in the systematic review by Rutjes and colleagues, enrolled patients of average age 65 and older, and reported on pain outcomes.
- Two new head-to-head trials compared the effects of two different HAs on pain in individuals of average age 65 or over and were not included in prior SRs. One found that single injections of a high- and low-molecular weight were equally effective in reducing pain and improving function at 6 months (with no change in quality of life), whereas another found that three injections of an intermediate molecular weight might be superior to low molecular weight HA over 6 months (with respect to reducing pain and improving function).

Detailed Synthesis

Systematic review

Six systematic reviews of moderate to good quality, published in 2012-2013, were identified that compared the effects of intra-articular HA with some other intervention on pain; the quality of
the reviews was assessed with AMSTAR (Table 7).13, 14, 81-84 We describe only the largest and highest quality of the reviews. This 2012 systematic review and meta-analysis, which identified 89 published and unpublished randomized trials of HA with any control, assessed the effects on pain intensity.14 Of the 89 trials, the authors were able to pool 71 sham or non-intervention controlled trials (9,617 patients), obtaining an effect size of -0.37 (95%CI -0.46, -0.28), which just met their prespecified minimal clinically important difference. Pooling 18 of the larger (sample size greater than 100 per intervention group) assessor-blinded trials showed a statistically significant but clinically irrelevant effect size of -0.11(95%CI -0.18, -0.04). A stratified analysis that compared the pooled effect size for the 54 studies with a sham control with that of 18 studies with a non-sham intervention found a pooled effect size for studies with a sham control of -0.34 (95% CI -0.44, -0.24).

Table 7. AMSTAR Assessment for Systematic Reviews of HA and Pain*

<table>
<thead>
<tr>
<th>Study</th>
<th>A priori design</th>
<th>Duplicate screening and extraction</th>
<th>Comprehensive search</th>
<th>Grey literature inclusions</th>
<th>Included/excluded studies listed</th>
<th>Study characteristics</th>
<th>Quality assessment</th>
<th>Quality considered</th>
<th>Pooling appropriate</th>
<th>Publication bias</th>
<th>COI assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bannuru, 201314</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Colen, 201213</td>
<td>C</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>C</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Miller, 201311</td>
<td>C</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Printz, 201382</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>NA</td>
<td>NA</td>
<td>Y</td>
</tr>
<tr>
<td>Rutjes, 201214</td>
<td>C#</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>C</td>
<td>Y</td>
<td>C</td>
</tr>
<tr>
<td>Trigkilidas, 201313</td>
<td>C</td>
<td>C</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>NA</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

*See Appendix D for assessment tool; Y=yes (low risk); N=no (high risk); C=can’t respond; NA=not applicable; COI conflict of interest; #need to access supplemental files
Original studies

No new placebo-controlled trials were identified that were not already included in the systematic review by Rutjes and colleagues, enrolled patients of average age 65 and older, and reported on pain outcomes. Two randomized trials were identified that were not included in the systematic review, enrolled populations of OA patients of average age 65 or over, and assessed the effects of two different HA products head-to-head on pain. A multi-center trial in France and Germany compared the effects of three weekly injections of GO-ON, a non-avian medium-molecular weight HA (1800-1500kD) with those of Hyalgan, a low molecular weight product on pain in 426 patients. Mean differences in WOMAC pain change were 5.2 (95% CI 0.9, 9.6) per protocol and 4.5 (95% CI 0.5, 8.5) (intention to treat) at 6 months, favoring GO-ON. Also, a higher proportion of patients responded to GO-ON than to Hyalgan. These differences paralleled the effects of the two devices on function as assessed by both the WOMAC (difference in effect size: -6.8, 95% CI -10.7, -2.8) and Lequesne indices (-1.2, 95% CI -2.0, -0.6), as described earlier in this report.

A Thai study compared the effects of a single injection of Hylan G-F 20 (Synvisc) and a single injection of Hyalgan on pain at 6 months in 30 patients. The WOMAC pain and function subscales showed significant improvement with no differences between the treatments at 6 months. QoL, as assessed by the SF-36, did not change over the same 6-month period.

Intra-articular injection of hyaluronic acid and adverse events

Description of included studies

Twenty four trials, three large cohort and case series studies, and 18 case reports were identified that reported on the incidence of adverse events among individuals 65 years of age and over.

Key Points

- In 24 placebo-controlled trials of HA, serious adverse events were small in number. Estimates are imprecise, and the magnitude of any increase in risk is very small, if present at all. The rate of non-serious AEs was higher but did not differ significantly between the HA-treated and placebo-control groups.
- Among three large cohort studies and case series, representing nearly 6,000 recipients of HA (some more than one series), one serious adverse event was reported: severe swelling and synovial fluid accumulation.
- Eighteen case reports provided reports of adverse events among 30 individuals 65 years of age or older, including five cases of sepsis (one case of staphylococcus scalded skin syndrome), and one case each of saphenous nerve injury, eosinophiluria, erythema, and herpes zoster (new onset).

Detailed Synthesis

Adverse events reported in trials. Twenty four trials reported data on adverse events (AEs). Compared Hyalgan to placebo, and seven...
compared Hyalgan to an active comparator. Four trials60, 67, 70, 78 reported data on both comparison types.

Only the placebo comparisons had enough trials within adverse event categories to pool. The results are presented in Table 6. With the assistance of a rheumatologist, we grouped the adverse events into three groups based on their site (injection site, joint [intra-articular], or other [including systemic]) and within each of the three groups, we further divided events according to whether they were serious or not serious. Examples of each type of event are also provided in Table 8.

The RCTs included in the AE analyses were assessed using items from the McHarm scale (Table 10).32 Out of 24 RCTs, four described a protocol for collecting AEs or a predefined set of AEs; the remaining 20 were unclear or indicated no predefined list of AEs. To elaborate, these 20 studies did not describe whether assessors asked patients about specific AEs on a list. Four of 24 studies described an active form of AE collection; the remainder used a passive form of AE assessment (e.g., they asked patients something more generic such as “have you experienced any adverse reactions?”) or did not describe how AEs were assessed. Fourteen of the 24 RCTs did describe assessing AEs at prespecified intervals (e.g., at follow-up appointments). In addition, eight studies reported that no serious adverse events occurred, without defining the term “serious adverse events.” However, as these weaknesses apply to both the active and placebo arms (assessors were blinded to study arm), any systematic undercounting of AEs would apply to both arms and have little effect on the relative difference.

Table 8. Pooled adverse events reported in trials, according to category

<table>
<thead>
<tr>
<th>AE Group</th>
<th># studies</th>
<th># event HA</th>
<th>sample size HA</th>
<th># events placebo</th>
<th>sample size placebo</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>local, not serious (e.g., erythema)</td>
<td>6</td>
<td>79</td>
<td>493</td>
<td>98</td>
<td>492</td>
<td>0.70</td>
<td>(0.48, 1.03)</td>
</tr>
<tr>
<td>joint, serious (e.g., synovitis)</td>
<td>5</td>
<td>8</td>
<td>447</td>
<td>10</td>
<td>442</td>
<td>0.77</td>
<td>(0.25, 2.31)</td>
</tr>
<tr>
<td>joint, not serious (e.g., pain)</td>
<td>7</td>
<td>97</td>
<td>518</td>
<td>121</td>
<td>559</td>
<td>0.83</td>
<td>(0.60, 1.15)</td>
</tr>
<tr>
<td>other, serious (e.g., Herpes zoster)</td>
<td>6</td>
<td>8</td>
<td>570</td>
<td>17</td>
<td>614</td>
<td>0.62</td>
<td>(0.23, 1.57)</td>
</tr>
<tr>
<td>other, not serious (e.g., headache)</td>
<td>6</td>
<td>199</td>
<td>553</td>
<td>196</td>
<td>594</td>
<td>1.26</td>
<td>(0.94, 1.68)</td>
</tr>
</tbody>
</table>

Adverse Events reported in observational studies. In order to further investigate rare adverse events that may not have occurred during clinical trials, we searched for cohort studies that reported AEs and cases reported post-licensure.

We identified four observational studies with at least 500 subjects each that reported adverse events in patients receiving hyaluronic acid for knee osteoarthritis. Due to heterogeneity, the results are described narratively.

Petrella85 published on a cohort of 537 hyaluronic acid-naïve patients who received at least one series of three injections of Suplasyn (500 – 730 kD) in a primary care center in Ontario, Canada. All had unilateral osteoarthritis of the knee with Kellgren-Lawrence grade 1 to 3; mean age was 68 years. All but 21 patients returned for a second series of three injections. Patients were followed for a mean of 6.7 years. The study was supported by the Canadian Institutes of Health; Suplaysn was purchased by the patients and was not subsidized by the manufacturer. The primary outcome studied was pain in walking, as measured using the VAS. No serious AEs were
reported, and there were no systemic (not local or intra-articular) AEs. Local AEs were observed following 1.48% and 1.32% of injections with the first and second series respectively. The authors provided no information on whether AEs were assessed passively or actively.

Kemper and colleagues\(^8^6\) reported on 4,253 patients of 840 orthopedic surgeons in Germany. Patients received injection of Synvisc (6000 kD) at three visits; Kellgren-Lawrence grades were not reported; 8.1% of patients had previously received hyaluronic acid injections. Mean age of the patients was 63.9 years, 60.8% were female, and 23.7% had bilateral osteoarthritis. AEs were actively elicited, serious AEs were clearly defined, and MEDRA coding was used. Adverse events were reported in 5.3% of patients and 2.9% of injections. Only one serious AE was reported; this event involved severe swelling and synovial fluid accumulation. The most commonly reported AEs were joint effusion (2.4% of patients), joint swelling (1.3%), arthralgia (1.2%), joint warmth (0.6%) and injection site erythema (0.3%). Secondary analyses were performed; surprisingly, patients younger than 70 years old were more likely to experience an AE than were older patients. Those with a longer time since diagnosis and those previously treated with viscosupplementation were also more likely to experience an AE. The product manufacturer sponsored the study; two of their scientists were co-authors.

In a large retrospective cohort study Petrella\(^8^7\) compared the safety of avian and non-avian hyaluronic acid for osteoarthritis of the knee. They included 1,726 patients who received avian HA and 1,971 who received non-avian HA at a large center in Canada from 1997 to 2007. Patients had Kellgren-Lawrence grade 1 to 3 evidence of knee OA; mean age was 65 years. There were no significant differences in baseline demographic characteristics or severity between groups. The group receiving avian HA had a significantly higher rate of adverse events (4.8% versus 1.7%) between the second and 10\(^{th}\) series than the group receiving non-avian HA. Rates of specific events were not reported; pain, effusion, and erythema were noted as most common. No serious adverse events were reported.

Finally, Waddell and Bricker\(^8^8\) published a case series of 1,158 patients in a large orthopedic practice in the US. The primary goal of the study was to assess AEs. The patients received at least one series of three injections of Synvisc. The mean age (65.8 years) and gender composition (60.6% female) were similar to the other two studies. However, the patients’ osteoarthritis of the knee was more severe; 70.9% of knees were grade four on the Kellgren-Lawrence scale, and 44.6% of patients had bilateral OA.

The authors provided details on treatment method that were not reported in the other studies. A fluoroscopic technique that confirms accurate needle placement was used. To avoid local AEs, they instructed patients to rest the afternoon of the injection and use an ice pack for two to three hours. In addition, they provided patients with a prescription opioid to use if needed. Finally, they prophylactically administered an intramuscular steroid in patients who had previously experienced knee pain and swelling with injection. Local AEs were reported in 4.7% of patients (1.3% of injections) during Course 1, 13.8% of patients (4.5% of injections) during Course 2, and 17.3% of patients (5.6% of injections) during Course 3. Non-local AEs were not reported. Both authors had received previous funding from the product manufacturer, who provided support for statistical analysis and a medical writer for the manuscript.

Data from the 18 identified AE case reports that included patients age 65 or over are displayed in Table 9. Thirty patients were represented; 77% were female. Over half had received injections of Synvisc, which is considered a high molecular-weight product.

The most commonly reported adverse events involved joint reactions. Pullman-Mooar\(^8^9\) reported inflammatory knee effusions in eight patients, ranging in age from 31 to 67 years. Each
of three physicians reported cases of pseudo-septic arthritis.90-92 Acute arthritis, and gout or pseudo-gout were also reported. Importantly, five cases of sepsis were reported in three articles; one of these patients suffered from staphylococcal scalded skin syndrome.

Other adverse events included systemic reactions in two patients, granulomatous synovitis in two patients, and one case each of saphenous nerve injury, eosinophiluria, erythema, and one case of new-onset herpes zoster.

Table 9. Adverse events described in case reports

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>AE</th>
<th>N</th>
<th>Age</th>
<th>Sex</th>
<th>Co-morbidities</th>
<th>Brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint Reaction (crystals, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bernardeau, et al., 200113</td>
<td>Acute Arthritis</td>
<td>2</td>
<td>59, 73</td>
<td>F</td>
<td>NR</td>
<td>Synvisc</td>
</tr>
<tr>
<td>Idrissi et al., 201224</td>
<td>Pseudo-septic arthritis</td>
<td>1</td>
<td>70</td>
<td>F</td>
<td>NR</td>
<td>Ostenil</td>
</tr>
<tr>
<td>Maillefert et al., 199726</td>
<td>Pseudo-gout (Chondrocalcinosis)</td>
<td>2</td>
<td>62, 83</td>
<td>F</td>
<td>NR</td>
<td>Hyaluron, unspecified</td>
</tr>
<tr>
<td>Pulman-Moor et al., 200229</td>
<td>Inflammatory knee effusions</td>
<td>8</td>
<td>31 to 67</td>
<td>3 M, 5 F</td>
<td>NR</td>
<td>Synvisc</td>
</tr>
<tr>
<td>Roos et al., 200449</td>
<td>Pseudo-septic arthritis</td>
<td>1</td>
<td>70</td>
<td>F</td>
<td>Chondrocalcinosis 2 years earlier</td>
<td>Ostenil</td>
</tr>
<tr>
<td>Tahiri et al., 200731</td>
<td>Pseudo-septic arthritis</td>
<td>1</td>
<td>70</td>
<td>F</td>
<td>Diabetes</td>
<td>Curavisc</td>
</tr>
<tr>
<td>Wendling et al., 200717</td>
<td>Acute gouty arthritis</td>
<td>1</td>
<td>72</td>
<td>F</td>
<td>Overweight, hypertension</td>
<td>Sinovial</td>
</tr>
<tr>
<td>Ali et al., 199946</td>
<td>Pseudo-gout</td>
<td>1</td>
<td>74</td>
<td>M</td>
<td>NR</td>
<td>Synvisc</td>
</tr>
<tr>
<td>Infections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kunugiza et al., 201190</td>
<td>Staphylococcal scalded skin syndrome (sepsis)</td>
<td>1</td>
<td>68</td>
<td>F</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Lequerre et al., 200229</td>
<td>Septic arthritis</td>
<td>1</td>
<td>70</td>
<td>M</td>
<td>NR</td>
<td>Synvisc</td>
</tr>
<tr>
<td>Shemesh et al., 201190</td>
<td>Septic arthritis</td>
<td>3</td>
<td>64, 70, 75</td>
<td>1 M, 2 F</td>
<td>Hypertension and or hyperlipidemia</td>
<td>NR</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iizuka et al., 200590</td>
<td>Saphenous nerve injury</td>
<td>1</td>
<td>68</td>
<td>F</td>
<td>Hypertension, gout</td>
<td>NR</td>
</tr>
<tr>
<td>Martens, 2001101</td>
<td>Systematic inflammatory reaction</td>
<td>1</td>
<td>70</td>
<td>F</td>
<td>NR</td>
<td>Synvisc</td>
</tr>
<tr>
<td>Rees et al., 2001102</td>
<td>Systemic reaction</td>
<td>1</td>
<td>79</td>
<td>F</td>
<td>Hypertension</td>
<td>Synvisc</td>
</tr>
<tr>
<td>Banerjee, 2002103</td>
<td>Eosinophiluria</td>
<td>1</td>
<td>68</td>
<td>M</td>
<td>Ischemic heart disease, mild renal impairment</td>
<td>Hyalgan</td>
</tr>
<tr>
<td>Semih et al., 200990</td>
<td>Herpes zoster</td>
<td>1</td>
<td>71</td>
<td>M</td>
<td>NR</td>
<td>Sodium hyaluronate</td>
</tr>
<tr>
<td>Calvo et al., 200790</td>
<td>Erythema</td>
<td>1</td>
<td>70</td>
<td>F</td>
<td>Hypertension, pyrazolone allergy</td>
<td>Go-On</td>
</tr>
<tr>
<td>Michou et al., 200490</td>
<td>Granulomatous synovitis</td>
<td>2</td>
<td>71, 72</td>
<td>F</td>
<td>NR</td>
<td>Synvisc</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Were the harms pre-defined using standardized or precise definitions?</td>
<td>Was the mode of harms collection specified as active?</td>
<td>Was the potential occurrence of harmful events collected at pre-specified intervals; for example, the occurrence of post-operative complications were evaluated on a daily basis within 30 days of the surgery?</td>
<td>Did the author(s) specify the number for each type of harmful event for each study group?</td>
<td>Was the total number of participants affected by harms specified for each study arm?</td>
<td>If the study reported that there were no serious AEs reported did they define serious AEs?</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Altman et al., 1998<sup>59</sup></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Berenbaum et al., 2012<sup>51</sup></td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Blanco et al., 2008<sup>53</sup></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Brandt et al., 2001<sup>82</sup></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>DeCaria et al., 2012<sup>83</sup></td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Dixon et al., 1988<sup>59</sup></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dougados et al., 1993<sup>41</sup></td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Grecomoro et al., 1987<sup>74</sup></td>
<td>No</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Henderson et al., 1994<sup>75</sup></td>
<td>Unclear</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Unclear</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Huang et al., 2011<sup>88</sup></td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Huskisson et al., 1999<sup>95</sup></td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Kahan et al., 2003<sup>86</sup></td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Karlsson et al., 2002<sup>87</sup></td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Were the harms pre-defined using standardized or precise definitions?</td>
<td>Was the mode of harms collection specified as active?</td>
<td>Was the potential occurrence of harmful events collected at pre-specified intervals; for example, the occurrence of post-operative complications were evaluated on a daily basis within 30 days of the surgery?</td>
<td>Did the author(s) specify the number for each type of harmful event for each study group?</td>
<td>Was the total number of participants affected by harms specified for each study arm?</td>
<td>If the study reported that there were no serious AEs reported did they define serious AEs?</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Khanasuk et al., 2012</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Leopold et al., 2003</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Lundsgaard et al., 2008</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Pavelka et al., 2011</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Petrella et al., 2002</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Petrella et al., 2008</td>
<td>No</td>
<td>Unclear</td>
<td>Yes</td>
<td>N/A</td>
<td>Unclear</td>
<td>No</td>
</tr>
<tr>
<td>Petrella et al., 2011</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pham et al., 2004</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Raman et al., 2008</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Roman et al., 2000</td>
<td>No</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>No</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Tamir et al., 2001</td>
<td>Yes</td>
<td>No</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
Discussion

Key Findings and Strength of Evidence

Intra-articular HA and KR

Three randomized trials and 13 observational studies reported on knee replacement (KR). However, two of the trials did not regard receipt of KR as an outcome (and therefore were not designed specifically to test the hypothesis), the participants in one study had a mean age under 65, and the trials were not powered to compare the rates of KR between HA and comparison groups. A number of observational studies reported rates of KR among HA recipients as approximately 20%. One large observational study that assessed the rates of KR by age group, pain at baseline, and various other factors reported that age was the only factor associated with the likelihood of undergoing KR: OA patients in the 60-69 year old age group were significantly more likely than patients under 50, patients 70-79, and those over 80 to undergo KR.48 This study also assessed the time interval between entering care in their practice and undergoing KR. Median time to KR for HA recipients was 1.8 years (14-2,147 days; median followup time in this study was 2.2 years (7-2,222 days); 75% of knees had not had KR by 3.8 years. The authors stated that the average interval between entering care in their practice and undergoing KR for patients not treated with HA was 3 months.

Given the designs of the studies, it is not possible to draw conclusions at this time regarding the effect of HA treatment on delay or avoidance of KR.

The strength of evidence for this question is insufficient to draw any conclusions (see Table 2).

Intra-articular HA and Function

Eighteen randomized trials reported on the effects of HA compared to sham-injected placebo control, another HA, or some other active treatment on function, as measured by the WOMAC, Lequesne index, KOOS, or ADLs, among patients whose average age was 65 or older. Pooling of ten placebo-controlled studies that reported outcomes for the WOMAC or Lequesne, all assessor blinded, revealed a small increase in function in favor of HA (-0.23, 95%CI -0.34, -0.02); however, this difference, which translates to a change of 5.6 units on a 0-100mm VAS scale, did not achieve the MCID of -0.37 (based on the pooled effect size, about 11 percent would have exceeded the MCID in improvement); eight of the ten measured outcomes at 6 months. One study reported placebo to be more effective and one found no difference.

One trial reported on the effects of HA on ADLs. This study found no change from baseline in the HA or placebo group.

No studies reported the proportion of patients who experienced improvement in function alone. However, four double-blind placebo-controlled trials that reported on function reported the proportion of patients who achieved a prespecified level of overall improvement; of these four, three reported a higher proportion of HA-treated patients than placebo-treated patients who achieved either patient- or investigator-reported improvement.

The duration of effect could not be ascertained: few studies followed patients long enough to truly measure durability of effect.

Too few head-to-head trials were identified to be able to draw any conclusions about the superiority of any one product over another.
None of the identified studies stratified findings by age, sex, or any other outcome of interest. The strength of evidence for the effect of HA compared with placebo is low (trials were not all well designed and two found no effect) but the strength of evidence for head-to-head comparisons is insufficient to draw any conclusions (Table 2).

Intra-articular HA and QoL

Three trials reported on the effects of HA treatment on quality of life. One trial, which compared Hyalgan to treatment with two different volumes of saline, found no change in quality of life from baseline using the KOOS quality-of-life component. Two head-to-head trials that compared Synvisc with Hyalgan assessed quality of life, one using the SF-36 mental component summary to assess QoL and one using the EuroQol-5D index to assess HRQoL. The trial that used the SF-36 reported no increase in quality of life for either group, but the trial that used the EuroQol-5D reported a slight increase in QoL for Synvisc from 3 through 12 months but only an increase in HRQoL for patients on Hyalgan at 3 months.

As only three trials reported both QoL and functional outcomes, no conclusions can be drawn about the relationship between these two parameters. The strength of evidence for any conclusions regarding an effect of HA on quality of life is insufficient.

Intra-articular HA and Pain

A large, comprehensive, relatively good quality 2012 systematic review that compared the effects of HA with sham or non-intervention controls reported that HA injections significantly reduced pain, both statistically and clinically (that is, reaching the MCID) when measured at 3 months; however, this effect was lessened to non-significance when only studies with blinded outcome assessment and at least 100 participants per study arm were included in the analysis. Stratified analysis that compared 54 studies with sham controls with 18 studies with non-blinded controls showed a statistically significant effect of HA on pain in the studies with sham controls that nearly met the MCID. They did not conduct a stratified analysis to assess the effect of age of participants. The authors reported evidence for publication bias, which we did not identify in our pooled analysis for effects on function. Two new trials compared the effects of two different HAs on pain and were not included in prior SRs. One found that single injections of a high- and low-molecular weight were equally effective in reducing pain at 6 months, whereas another found that three injections of an intermediate molecular weight might be superior to low molecular weight HA over 6 months.

Based on the findings of the full sample analysis and the analysis stratified by the use of sham controls in the prior systematic review, we believe that the strength of evidence is low that HA reduces pain, on average, by an amount that approaches the minimum clinically important difference.

Intra-articular HA and AEs

We identified twenty four trials, three large cohort and case series studies, and 18 case reports that reported on the incidence of adverse events among individuals 65 years of age and over who were given HA to treat OA of the knee.
In placebo-controlled trials of HA, serious adverse events were small in number, and their precise frequency cannot be estimated from current data. The rate of non-serious AEs was higher but did not differ between the HA-treated and sham-control groups.

Among three large cohort studies and case series, representing nearly 6,000 recipients of HA (some more than one series), one serious adverse event was reported: severe swelling and synovial fluid accumulation.

Eighteen case reports provided reports of adverse events among 30 individuals 65 years of age or older, including five cases of sepsis (one case of staphylococcus scalded skin syndrome), and one case each of saphenous nerve injury, eosinophiluria, erythema, and new-onset herpes zoster.

These findings suggest that the adverse events associated with intra-articular injections of HA are nearly all at the site of injection or within the joint, largely confined to pain or swelling, and not different from those of patients who received sham injections. The FDA PMA database revealed no post-marketing reports of unexpected adverse events. Information provided by manufacturers about five products was limited to already published data.

The strength of evidence for the conclusion that serious adverse events are rare is moderate. The strength of evidence for a statistically significant difference in SAEs and non SAEs between intervention and placebo groups is low.

Findings in Relation to What is Already Known

To our knowledge, this report represents the first systematic review to attempt to assess the effects of intra-articular HA injections on both delay or avoidance of KR, pain, function, quality of life, and adverse events.

No other systematic reviews have attempted to synthesize the effects of HA on KR, and the present review found insufficient evidence to draw a conclusion about the effects of HA on those outcomes.

Regarding the effect of HA on function, we calculated that the effect size in our study corresponded to an improvement of 5.6 units (on a 0-100mm VAS scale) which was smaller than the minimum clinically important difference of 9 units (which would be comparable to a 10 percent improvement in, e.g., the ability to walk downstairs or to rise from sitting). Our analysis of the effects of HA on function showed no evidence of publication bias.

One large 2012 systematic review assessed the effects of HA on pain, function, and AEs. That review identified a moderate effect of HA on function (-0.33, 95% CI -0.43, -0.22, based on 52 trials) that was no longer considered clinically significant when only large trials (100 or more participants per study arm) with assessor blinding were considered (-0.09, 95% CI -0.17, 0.00, based on 15 trials). However, we believe that limiting the pooled analysis to the larger studies is not methodologically justified, given the small proportion of studies that fit the criteria and the fact that study size is not typically a criterion in assessing study quality/risk of bias. The meta-analysis on the outcome of function conducted for our review included only sham-controlled trials that incorporated assessor blinding, but we did not find any studies that met our inclusion criteria that enrolled more than 100 participants per study arm.

The 2013 American Academy of Orthopedic Surgeons guidelines for the treatment of osteoarthritis of the knee also conducted a systematic review of the literature on the effects of HA on WOMAC-assessed pain, function, and stiffness. These guidelines recommend against the use of hyaluronic acid to treat patients with symptomatic conditions based on the finding that although statistically significant improvement was seen in pain and function with HA compared
to placebo, the improvements did not meet the standard of exceeding the minimum clinically important improvement (in contrast, the 2008 AAOs guidelines had found insufficient evidence to recommend for or against HA, based on an AHRQ review that found evidence of publication bias). The 2012 American College of Rheumatology Guidelines for the treatment of osteoarthritis of the knee also conducted a systematic review of the literature on the effects of HA and other modalities and issued a conditional recommendation for the use of HA for the initial management of patients with knee OA.

The current review is the first to consider only studies of individuals of average age 65 or older. Approximately half of the trials included in the 2012 review by Rutjes and colleagues that assessed the outcome of pain enrolled populations of average age less than 65; and of the 52 trials they included in their analysis of the effects of HA on function, nearly all included participants of average age less than 65. Although patient age might affect the ability to experience (or realize) improved function from a treatment, no evidence exists that would suggest age would affect the ability to experience pain relief. Therefore, we believe the analyses in the prior review that included studies of patients whose average age was less than 65, given the much larger number of included studies, is more adequately powered to assess the effects of HA on pain than would be an analysis that includes a smaller number of studies limited to individuals of average age 65 and over.

The current review found only a small number of serious AEs and in trials, found no differences between treatment and placebo conditions. The 2012 review pooled data on serious AEs from 14 trials that reported on serious AEs and found an increased risk for serious AEs in the HA-treated groups, whereas a 2013 review of 29 studies found no difference between HA and placebo for any AE, in agreement with the present study. To derive a potential explanation for the difference in the risk for serious AEs between the review by Rutjes and colleagues and ours, we reabstracted the data on serious AEs (both those reported by original study authors as being serious, those deemed serious by the criteria of the present study, and those deemed serious by the criteria of the 2012 review). We included only studies that would have met our inclusion criteria (except for age); therefore we eliminated studies that were not assessor blinded, studies in which patients served as their own controls, and conference abstracts, for example.

The increase in risk for serious AEs among patients who received HA compared with placebo in the 2012 review appears to be attributable to the difference in the statistical analyses between the two reviews. The criteria used to define SAEs differed between the two reviews, fewer than half of the trials included in the SAE analysis of the review by Rutjes and colleagues actually described specific AEs, and a number of studies that did describe the SAEs they observed had methodological limitations.

Regarding non-serious AEs, the 2012 review limited its assessment to flare-ups (a joint reaction), finding no statistically significant difference between treated and placebo groups. This finding agrees with that of the present review, which found no statistically significant differences between actively treated and sham/placebo-treated groups for non-serious local, joint, and “other” AEs. It is not possible to assess whether the potentially high numbers of these non-serious AEs indicate that a large proportion of study participants experience these AEs because most studies do not report the total numbers of participants who experience at least one AE (so one participant could report many AEs). In addition, the observation that the number of “other” (not joint related and not local, e.g., “headache”) non-serious AEs is far higher than the numbers of local and joint-related non-serious AEs, supports a lack of association between these
occurrences and the intervention and suggests knowledge of such events may not have much of an impact on the decision-making of an individual seeking the chance for relief.

Applicability

To increase potential applicability, we limited studies included in the current review with functional outcomes to those with an average age of 65 or older. Nevertheless, no studies excluded patients younger than 65. Given that the only study that assessed factors that might influence the likelihood of undergoing KR found that age was the only influential factor, age of study participants is likely to be an important consideration for this outcome.

The larger trials included in the assessment of functional outcomes were mostly conducted in academic settings; this typical characteristic of randomized trials tends to limit their applicability to community settings. However a number of the observational studies that addressed the outcome of KR were conducted in private medical practices.

Implications for Clinical and Policy Decision Making

The evidence identified for the current study is insufficient to support a decision either way about the efficacy of intra-articular HA injection based on the delay or avoidance of KR. In addition, the strength of evidence is low regarding the efficacy of HA for improving quality of life or function in a population 65 years of age or older.

Limitations of the Comparative Effectiveness Review Process

Given the constraints of the project, we did not attempt to review studies of populations of average age less than 65 years to determine whether they found improvements in function or quality of life. However, removing the exclusion criterion of age we identified only one randomized trial that reported KR, and it was not considered a primary or even secondary outcome. We also did not contact authors of original research studies to request raw data by patient age and did not attempt to do new pooling of the studies included in the review by Rutjes and colleagues, to include only studies of older populations for reasons explained above.

Limitations of the Evidence Base

The majority of trials identified for the current report were of relatively mediocre quality, with poor reporting. Few trials described their recruitment strategy or method for allocation concealment. A number of studies had dropout rates higher than 20% (no studies addressed differences between dropouts and completers), and although most excluded individuals who had recently received corticosteroids or other courses of an HA, most also did not bar participants from using other modes of pain relief, such as NSAIDs. Further, few or no studies attempted to determine whether response to HA differed between groups of patients stratified by characteristics such as baseline age, disease severity (stage) or type; or duration of treatment, few studies followed patients long enough to truly measure durability of effect, and adverse events were not measured using any standardized method.

Specific to the outcomes of function and knee replacement, no trials measured the duration of effect, no trials measured knee replacement as a primary outcome, and no trials reported the percentage of participants whose function improved (seven studies reported on the percent who
achieved a prespecified level of global improvement, of which four were double-blind placebo-controlled trials).

Research Gaps

Clear research gaps exist regarding studies of the effectiveness of HA among individuals 65 years of age and older and the effect of HA, if any, on delay or avoidance of KR. Two searches for ongoing studies of HA and OA of the knee on Clinicaltrials.gov and review of entries provided by manufacturers revealed no completed, ongoing, or recruiting studies on older individuals with knee OA or with outcomes of KR. The observational studies identified for this review could not definitively answer the question of whether HA delays or prevents the need for KR. However, we advocate analyzing data from any of the large administrative databases maintained by commercial payers, to answer the question as to whether beneficiaries who are treated with intra-articular HA proceed to KR at a slower rate than do those who do not receive HA. We realize that a number of factors might affect the decision to undergo KR, such as age, comorbidities, pain tolerance, activity level, aversion to surgical intervention, and expectations about one’s life expectancy; however, at least some of these factors could be controlled for in a large, well-designed case control study. Preliminary findings of such a study were presented at the 2013 meeting of the American College of Rheumatology: using the Truven Marketscan database, researchers matched 7,000 HA recipients (66% female) with 19,627 non-recipients with OA of the knee (propensity score matching with the non-HA cohort was 98%). With one episode of HA treatment, the median times from the initial specialist visit to KR were 199 and 443 days for the non-HA cohort and HA cohort, respectively. Additional treatment episodes increased the median gap by an average 202 days, suggesting true dose-response.

Conclusions

The literature identified for the current review cannot answer the question whether HA delays or prevents the need for KR in older individuals. The literature suggests a small role for HA in improving function among older individuals and an equally small role in reducing pain among adults, of unclear clinical importance with relatively few serious adverse events.
References

42. Forster MC, Straw R. A prospective randomised trial comparing intra-articular Hyalgan injection and arthroscopic washout

56. Waddell DD, Cefalu CA, Bricker DC. A second course of hylan G-F 20 for the treatment of osteoarthritic knee pain: 12-

68. Khanasuk Y, Dechmaneenin T, Tanavalee A. Prospective randomized trial comparing the efficacy of single 6-ml injection of hylan G-F 20 and hyaluronic acid for primary knee arthritis: a preliminary

Abbreviations / Acronyms

ADL Activities of Daily Living
AEs Adverse Events
AHRQ Agency for Healthcare Research and Quality
CMS Centers for Medicare and Medicaid Services
DJD Degenerative Joint Disease
FDA Food and Drug Administration
HA Hyaluronic acid
HRQoL Health-Related Quality of life
IADLs Instrumental Activities of Daily Living
KOOS Knee Injury and Osteoarthritis Outcomes Score
KR Knee Replacement
MCID Minimum clinically important difference
OARSI Osteoarthritis Research Society International
OMERACT Outcome Measures in Rheumatology
OR Odds-Ratio
PICOTs Participants, Interventions, Comparators, Outcomes, and Timeframes
PMA Post-Marketing Assessment
QoL Quality of Life
RCTs Randomized Controlled Trials
ROB Risk of Bias
SCEPC Southern California Evidence-based Practice Center
SD Standard Deviation
SF-36 Short form-36
SIPS Scientific Information Packets
SMD Standardized Mean Difference
SOE Strength of Evidence
SRC Scientific Resource Center
TAP Technology Assessment Program
TKR Total Knee Replacement
VAS Visual analog scale
WOMAC Western Ontario and McMaster Universities Osteoarthritis Index
Appendix A. Search Strategy

DATABASE SEARCHED & TIME PERIOD COVERED:
PubMed – 1/1/1990-10/30/2013

SEARCH STRATEGY:
(1a) hyaluronic acid OR hyaluronate* OR hyaluronan OR hylan
AND
osteoarthritis, knee OR (knee* AND osteoarthritis) OR (knee* AND arthrit*) OR gonarthrosis

OR

(1b) hyaluronic acid OR hyaluronate* OR hyaluronan OR hylan
AND
degenerative joint disease
AND
knee OR knees

OR

(1c) viscosupplement* OR visco-supplement*
AND
osteoarthritis, knee OR (knee* AND osteoarthritis) OR (knee* AND arthrit*) OR gonarthrosis

NUMBER OF RESULTS- 904
NUMBER AFTER REMOVAL OF INTERNAL DUPLICATES: 770
NUMBER AFTER ADDITIONAL REMOVAL OF DUPLICATES BY A.M.: 767

DATABASE SEARCHED & TIME PERIOD COVERED:
Cochrane Databases – 1/1/1990-11/21/13

SEARCH STRATEGY 1a:
hyaluronic acid OR hyaluronate* OR hyaluronan OR hylan
AND
osteoarthritis, knee OR (knee* AND osteoarthritis) OR (knee* AND arthrit*) OR gonarthrosis

All Results (216)
 Cochrane Reviews (5)
 Other Reviews (14)
 Trials (184)
 Methods Studies (1)
 Technology Assessments (7)
 Economic Evaluations (5)
SEARCH STRATEGY 1b:
yaluronic acid OR hyaluronate* OR hyaluronan OR hylan
AND
degenerative joint disease
AND
knee OR knees

All Results (8)
Cochrane Reviews (4)
Other Reviews (0)
Trials (4)
Methods Studies (0)
Technology Assessments (0)
Economic Evaluations (0)

SEARCH STRATEGY 1c:
viscosupplement* OR visco-supplement*
AND
osteoarthritis, knee OR (knee* AND osteoarthritis) OR (knee* AND arthrit*) OR gonarthrosis

All Results (57)
Cochrane Reviews (2)
Other Reviews (4)
Trials (45)
Methods Studies (0)
Technology Assessments (5)
Economic Evaluations (1)

DATABASE SEARCHED & TIME PERIOD COVERED:
Embase – 1/1/1990-11/22/2013

SEARCH STRATEGY:
(1a)
yaluronic NEAR/2 acid* OR hyaluronate* OR 'hyaluronan'/exp OR hyaluronan OR hylan
AND
osteoarthritis, AND ('knee'/exp OR knee) OR (knee* AND ('osteoarthritis'/exp OR osteoarthritis)) OR
(knee* AND arthrit*) OR 'gonarthrosis'/exp OR gonarthrosis
AND
[humans]/lim
(EXCLUDE MEDLINE RESULTS)

NUMBER OF RESULTS: 1181

(1b)
'degenerative joint disease'/exp OR 'degenerative joint disease' OR 'degenerative joint diseases'
AND
'knee'/exp OR knee OR knees
AND
NUMBER OF RESULTS: 1084

(viscosupplement* OR 'visco supplement' OR 'visco supplements' OR 'visco supplementation'
AND
(knee* AND ('osteoarthritis'/exp OR osteoarthritis)) OR (knee* AND arthrit*) OR 'gonarthrosis'/exp OR
gonarthrosis
AND
[humans]/lim
(EXCLUDE MEDLINE RESULTS)

NUMBER OF RESULTS: 228

TOTAL NUMBER OF RESULTS: 2493
NUMBER AFTER INTERNAL REMOVAL OF DUPLICATES: 1202
NUMBER AFTER REMOVAL OF DUPLICATES WITH OTHER DATABASE RESULTS: 698
NUMBER AFTER ADDITIONAL REMOVAL OF DUPLICATES BY A.M.: 693

DATABASE SEARCHED & TIME PERIOD COVERED:
Web of Science Databases=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH – 1/1/1990-
11/22/2013

SEARCH STRATEGY:
Topic=(hyaluronic acid OR hyaluronate* OR hyaluronan OR hylan) AND Topic=(knee OR
knees) AND Topic=(osteoarthritis OR arthrit* OR gonarthrosis)

OR

Topic=(hyaluronic acid OR hyaluronate* OR hyaluronan OR hylan) AND Topic=(knee OR knees) AND
Topic=(degenerative joint disease)

OR

Topic=(viscosupplement* OR visco-supplement*) AND Topic=(knee OR knees) AND
Topic=(osteoarthritis OR arthrit* OR gonarthrosis)

NUMBER OF RESULTS: 1225
NUMBER AFTER REMOVAL OF DUPLICATES WITH OTHER DATABASE RESULTS: 525
NUMBER AFTER ADDITIONAL REMOVAL OF DUPLICATES BY A.M.: 520

DATABASE SEARCHED & TIME PERIOD COVERED:
SCOPUS – 1/1/1990-11/25/2013

SEARCH STRATEGY:
(1a)
hyaluronic acid OR hyaluronate* OR hyaluronan OR hylan
AND
knee OR knees
AND
osteoarthritis OR arthrit* OR gonarthrosis
1481

(1b)
TITLE-ABS-KEY(hyaluronic acid OR hyaluronate* OR hyaluronan OR hylan)
AND
knee OR knees
AND
degenerative joint disease
AND
SUBJAREA(mult OR agri OR bioc OR immu OR neur OR phar OR mult OR medi OR nurs OR vete OR dent OR heal)
65

(1c)
TITLE-ABS-KEY((viscosupplement* OR visco-supplement*)
AND
knee OR knees
AND
osteoarthritis OR arthrit* OR gonarthrosis
AND
SUBJAREA(mult OR agri OR bioc OR immu OR neur OR phar OR mult OR medi OR nurs OR vete OR dent OR heal)
337

TOTAL NUMBER OF RESULTS: 1883
TOTAL AFTER INTERNAL REMOVAL OF DUPLICATES: 1520
TOTAL AFTER REMOVING ALL DUPLICATES WITH OTHER DATABASE RESULTS & IDENTIFIED ANIMAL-ONLY STUDIES: 141
NUMBER AFTER ADDITIONAL REMOVAL OF DUPLICATES BY A.M.: 122

DATABASE SEARCHED & TIME PERIOD COVERED:
NEW YORK ACADEMY OF MEDICINE GREY LITERATURE REPORT – Earliest dates to 11/26/2013

SEARCH STRATEGY:
Hyaluronic OR hyaluronate OR hyaluronan OR hylan OR viscosupplement OR visco-supplement OR knee OR knees
NUMBER OF RESULTS: 0

===
DATABASE SEARCHED & TIME PERIOD COVERED:
CANADIAN AGENCY FOR DRUGS AND TECHNOLOGIES IN HEALTH (CADTH) GREY
MATTERS DATABASE – Earliest to 11/26/2013

SEARCH STRATEGY:
hyaluronic OR hyaluronate OR hyaluronan OR hylan
NUMBER OF RESULTS: 1

viscosupplement OR visco-supplement
NUMBER OF RESULTS: 0

knee OR knees
NUMBER OF RESULTS: 46
Appendix B. List of Excluded Studies

Not English – N=7

Study Design – N=78

4. I've read that hyaluronic acid knee injections can be used to postpone knee surgery. Can hyaluronic acid in pill form provide the same relief? Health News. 2006 Apr;12(4):16. PMID: 16583498.

39. Hunter D. Intraarticular hylan was no better than hyaluronic acids for osteoarthritis of the knee. ACP J Club. 2008 Mar-Apr;148(2):42. PMID: 18311872.

Participants - N=5

Interventions not of interest - N=4

Outcomes not of interest - N=75

Mean age less than 65 years - N=71

AEs where sample size was less than 500 - N=27

Duplicate data - N=7

Appendix C. Evidence Table

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Study Location, Years, Name, Design, and Funding</th>
<th>Participants</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Comorbidities</th>
<th>Study Arms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altman et al., 1998<sup>60</sup></td>
<td>US <1998 RCT/CCT parallel Funding: Industry</td>
<td>Age Range: 40-90 Mean age: 64 SD controls: 10 (whole group) Number of participants enrolled: 495 Number of participants in analysis: 333 Number of knees: NR Mean BMI: NR % Female: 57</td>
<td>Diagnosis of osteoarthritis of the knee: ACR(NR) Knee radiograph(Kellgren-Lawrence grade 2 or 3, >=1 osteophyte) Duration of symptoms Knee pain 1 year or more Score(s) on OA assessments VAS for pain on a 50 foot walk: >=20mm WOMAC pain subscale: >=20 on >=1 item out of 5 6-point categorical scale: moderate or marked main Minimum age: 40 Maximum age: 80 No prior IA HA injection within one year No other IA injections, including corticosteroids within preceding 3 months If both knees affected, more serious one was used</td>
<td>NR</td>
<td>NR</td>
<td>Arm 1: N = 115 Mean age: 65 (10) Placebo/sham Acetaminophen up to 4000mg /day permitted as rescue Arm 2: N = 105 Mean age: 62(10) Hyalgan 20mg/2ml Molecular weight: 500-730kD Oral placebo for naproxen twice daily and Acetaminophen up to 4000mg /day permitted as rescue Arm 3: N = 113 Mean age: 63(9) NSAID Total treatments: 5 Time between treatment: 1 week</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Study Location, Years, Name, Design, and Funding</td>
<td>Participants</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Comorbidities</td>
<td>Study Arms</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Berenbaum et al., 2012<sup>1</sup></td>
<td>France, Germany 2008-2009 EudraCt no 2008-003875-35 RCT/CCT parallel Funding: Industry</td>
<td>Age Range: NR Mean age: 67 SD controls: NR Number of participants enrolled: 426 Number of participants in analysis: 426 Number of knees: NR Mean BMI: 27.7 (3.1) for Hyalgan % Female: 63</td>
<td>Diagnosis of osteoarthritis of the knee: ACR(NR) Radiologic(Kellgren-Lawrence stage II or III within past 12 months) Duration of symptoms At least 6 months Failure of another treatment modality: Analgesics and/or regular NSAIDs Score(s) on OA assessments Global knee pain VAS: 40mm/100mm WOMAC pain subscale score: 25 or greater on the 0-100 normalized scale Lequesne Index: 4 or greater Minimum age: 49 Maximum age: 81 Intolerance to NSAIDs or weak opioids Radiologic evidence of bilateral OA if global pain VAS in contralateral knee<30mm</td>
<td>Current or prior receipt of HA in affected knee Current or prior receipt of glucocorticoids in affected knee Use of certain analgesics: Opioids within past month of baseline Other musculoskeletal or joint disease or condition that limits mobility: Inflammatory or other rheumatic diseases Patellofemoral symptomatic OA Secondary OA Symptomatic hip OA ipsilateral to target knee Clinical joint effusion Excessive varus or valgus knee deformity (on physical exam, confirmed radiographically</td>
<td>Arm 1: N = 209 Mean age: 66.1 (8.1) Hyalgan Molecular weight: 500 kD-730 kD NSAID or paracetamol up to 4g/d as rescue medication Arm 2: N = 217 Mean age: 67.2 (7.8) GO-ON (2.5 ml, 10mg/ml) Molecular weight: 800 kD-1500 kD NSAID or paracetamol up to 4g/d as rescue medication Total treatments: 3 Time between treatment: 3 weeks</td>
<td></td>
</tr>
<tr>
<td>Author, Year</td>
<td>Study Location, Years, Name, Design, and Funding</td>
<td>Participants</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Comorbidities</td>
<td>Study Arms</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Blanco et al., 2008</td>
<td>Spain <2008 RCT/CCT parallel Funding: Industry</td>
<td>Mean age: 68.3 SD controls: (9.1) Number of participants enrolled: 42 Mean BMI: 33 % Female: 76</td>
<td>Diagnosis of osteoarthritis of the knee: WOMAC pain(≥150mm) ACR Kellgren-Lawrence(IV) Minimum age: 40 Waiting list for knee replacement</td>
<td>Prior surgical procedure on affected knee Current or prior receipt of HA in affected knee Current or prior receipt of glucocorticoids in affected knee Other musculoskeletal or joint disease or condition that limits mobility Use of glucosamine within prior 3 months Use of an investigational drug within 30 days of study entry CNS impairment, impaired coagulation Known sensitivity to HA, paracetamol, or diclofenac Immune-compromised or receiving immunosuppressive therapy or considered unable to complete treatment or followup</td>
<td>NR</td>
<td>Arm 1: N = 20 Mean age: 68.3(9.1) Placebo/sham Paracetamol and/or diclofenac as rescue analgesics Arm 2: N = 22 Mean age: 67.5(8.1) Adant Molecular weight: 900 kDa Total treatments: 10 (2 cycles of 5 weekly injections, separated by 24 weeks) Time between treatment: 1 week</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Study Location, Years, Name, Design, and Funding</td>
<td>Participants</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Comorbidities</td>
<td>Study Arms</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--------------</td>
<td>------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>Brandt et al., 2001</td>
<td>US 1996-1997 RCT/CCT parallel Funding: Industry</td>
<td>Age Range: NR Mean age: NR SD controls: NR Number of participants enrolled: 226 Number of participants in analysis: 226 and 135 Number of knees: NR Mean BMI: HA: 32(6); Saline: 30.1(6.2) % Female: 63</td>
<td>Diagnosis of osteoarthritis of the knee: Kellgren-Lawrence(Grade II or III) Score(s) on OA assessments WOMAC: pain score 13 or greater in knee to be treated knee and less than 13 in contralateral knee Minimum age: 50 Willing to d/c other analgesics and NSAIDs for 5 half-lives of the relevant drug Able to walk 50 feet unassisted Not pregnant or planning pregnancy</td>
<td>Prior surgical procedure on affected knee: Arthroplasty Current or prior receipt of HA in affected knee Current or prior receipt of glucocorticoids in affected knee Initiation of quadriiceps exercise program within 4 months of screening Kellgren-Lawrence Grade IV radiographic changes in either knee Tx with anticoagulants, immunosuppressives, or muscle relaxants Inability to tolerate acetaminophen Clinically significant comorbidity (renal or hepatic disease) or abnormality in routine lab tests or allergy to lidocaine</td>
<td>Involvement of both knees: HA: 78% Saline: 88%</td>
<td>Arm 1: N = 112 Mean age: 67(8.4) Placebo/sham Arm 2: N = 114 Mean age: 65(8.4) Orthovisc (2 mL, 15mg/mL) Molecular weight: 1000-2900 kD (considered high MW) Total treatments: 3 Time between treatment: 1 week</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Study Location, Years, Name, Design, and Funding</td>
<td>Participants</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Comorbidities</td>
<td>Study Arms</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| DeCaria et al., 2012⁵⁵ | Ontario Canada <2012 RCT/CCT parallel Funding: Non-industry | Age Range: 60-80
Mean age: NR
SD controls: NR
Number of participants enrolled: 30
Number of participants in analysis: na
Number of knees: na
Mean BMI: HA: 30.48(6.16)
Placebo: 29.40(4.11)
% Female: 47 | Diagnosis of osteoarthritis of the knee:
ACR: Kellgren-Lawrence(Grade II-III)
ACR clinical criteria for knee pain(NR)
Failure of another treatment modality: Multiple years
Minimum age: 60
Maximum age: 80 | Prior surgical procedure on affected knee:
Except for arthroscopy 18 months or more before study commencement
Other musculoskeletal or joint disease or condition that limits mobility: Non OA arthritis (e.g., RA, gout), OA in other lower limbs, end-stage knee OA; lower back pathology that limited walking, leg length differential>2cm
A neurological or cardiovascular condition that could impair gait function
Cognitive impairment
Intraarticular injection within 6 months prior to study commencement
Chronic use of oral corticosteroids | NR | Arm 1:
N = 15
Mean age: 72.93 (5.48)
500 mg acetaminophen to be taken up to 4g/day as rescue medication
Placebo/sham
1.2 ml 0.001 mg/ml inert HA
Arm 2:
Hyaluronic acid (2 ml, 20 mg/ml)
Molecular weight: 730 kD
500 mg acetaminophen to be taken up to 4g/day as rescue medication
Total treatments: 3
Time between treatment: 1 week |

Mean age: 68.5
SD controls: NR
Number of participants enrolled: 63
Number of participants in analysis: 53
Number of knees: NR
Mean BMI: NR
% Female: 54 | Diagnosis of osteoarthritis of the knee: Symptomatic OA NR | Use of certain analgesics: If other than for OA
Other musculoskeletal or joint disease or condition that limits mobility: Hip OA; primary inflammation of the knee (e.g., RA, psoriatic arthropathy, pseudogout, joint infection)
Skin conditions overlying the joint
Poor general health | NR | Arm 1:
N = 33
Mean age: nr
Hyalgan 0.2mg/2 ml
Molecular weight: NR
Placebo/sham
Arm 2:
N = 30
Mean age: nr
Hyalgan 20mg/2 ml
Molecular weight: NR
Paracetamol was permitted but NSAIDS, corticosteroids, and strong analgesics were not
Total treatments: Varied
1 for first 3 weeks and then 2 |
<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Study Location, Years, Name, Design, and Funding</th>
<th>Participants</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Comorbidities</th>
<th>Study Arms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dougados et al., 1993</td>
<td>France <1993 RCT/CCT parallel Funding: NR</td>
<td>Mean age: 69.0 SD controls: 10.6 Number of participants enrolled: 110 Number of participants in analysis: 95 (ITT also done) Mean BMI: NR % Female: 71.0</td>
<td>Diagnosis of osteoarthritis of the knee: ACR Score(s) on OA assessments VAS for pain: >=40 out of 100 Femorotibial localization Knee effusion</td>
<td>Prior surgical procedure on affected knee: Prosthesis or any intra-articular surgery during the preceding 2 years Use of certain analgesics: Dose of NSAIDS or analgesics stable during previous month Other musculoskeletal or joint disease or condition that limits mobility: Secondary osteoarthritis of the knee Serious concomitant medical illness Any arthrocentesis during prior 3 months Stable dose of any basic OA therapy stable for prior 3 months; Stable use of any physiotherapy during the previous month and first 7 weeks of study</td>
<td>NR</td>
<td>Arm 1: Placebo/sham Arm 2: Hyalectin (Hyalgan) Molecular weight: 500-730 kDa Total treatments: 4 Time between treatment: 1 week</td>
</tr>
<tr>
<td>Forster et al., 2003</td>
<td>UK <2002 RCT/CCT parallel Funding: NR</td>
<td>Age Range: NR Mean age: 61.5 SD controls: NR Number of participants enrolled: 38 Number of participants in analysis: 32 Mean BMI: NR % Female: NR</td>
<td>Diagnosis of osteoarthritis of the knee: On waiting list for arthroscopic washout Fitness for general or local anesthesia</td>
<td>Prior surgical procedure on affected knee Current or prior receipt of HA in affected knee Current or prior receipt of glucocorticoids in affected knee Mechanical symptoms</td>
<td>NR</td>
<td>Arm 1: N = 19 Mean age: 63 Arthroscopic washout Arm 2: N = 19 Mean age: 60 Hyalgan Molecular weight: 500-730 kDa Total treatments: 5 Time between treatment: 1 week</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Study Location, Years, Name, Design, and Funding</td>
<td>Participants</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Comorbidities</td>
<td>Study Arms</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>Grecomoro et al., 1987<sup>14</sup></td>
<td>Italy, <1987 RCT/CCT parallel Funding: NR</td>
<td>Age Range: 43-92 Mean age: 64.88 SD controls: 10.94 Number of participants enrolled: 34 Number of knees: 40 % Female: 19/34</td>
<td>Diagnosis of osteoarthritis of the knee: Not reported Knee pain with movement</td>
<td>NR</td>
<td>Involvement of both knees: 6/34</td>
<td>Arm 1: N = 20 knees Mean age: NR Placebo/sham Arm 2: N = 20 knees Mean age: NR Hyalgan Molecular weight: 500K-750K Total treatments: 3 Time between treatment: 1 week</td>
</tr>
<tr>
<td>Henderson et al., 1994<sup>25</sup></td>
<td>UK, <1994 RCT/CCT parallel Funding: NR</td>
<td>Age Range: NR Mean age: NR SD controls: NR Number of participants enrolled: 91 Number of participants in analysis: 84 Number of knees: NR Mean BMI: NR % Female: 69</td>
<td>Diagnosis of osteoarthritis of the knee: Clinical history and radiological evidence Kellgren-Lawrence(Grades I and II: severity group 1; Grades III and IV: severity group 2) Score(s) on OA asessments VAS scale for pain evoked by activities: minimum score of 30 mm out of 100mm</td>
<td>Other musculoskeletal or joint disease or condition that limits mobility: Inflammatory joint disease, metabolic bone disease, anserine bursitis, pain referred from other structures</td>
<td>Involvement of both knees: >99%</td>
<td>Arm 1: N = 20 (Severity group 1) Mean age: 60.0(1.9) Placebo/sham Arm 2: N = 26 Severity Group 2 Second placebo group Arm 3: N = 18 Severity Group 1 Mean age: 63.9(1.9) Hyalgan (20mg/2mL) Molecular weight: NR Arm 4: N = 26 Severity Group 2 Mean age: 67.0(1.7) Hyalgan Total treatments: 5 Time between treatment: 1 week</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Study Location, Years, Name, Design, and Funding</td>
<td>Participants</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Comorbidities</td>
<td>Study Arms</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>Huang et al., 2011<sup>10</sup></td>
<td>Taiwan <2011 RCT/CCT parallel Funding: Industry</td>
<td>Age Range: nr</td>
<td>Diagnosis of osteoarthritis of the knee: ACR (knee pain with one or more of the following conditions: age>50, crepitus, or morning stiffness<30 minutes duration Radiographic evidence(Kellgren Lawrence score II and III, predominance in tibio-femoral compartment) VAS pain scores on 50-foot walking test(>=40mm) Minimum age: 50</td>
<td>Current or prior receipt of glucocorticoids in affected knee Other musculoskeletal or joint disease or condition that limits mobility Severe degeneration of knee joint with marked joint narrowing, varus, or valgus deformity of the knee (>12”) or other joint deformities or other joint disorders Joint or skin infections Joint prostheses of lower limb or symptomatic hip Inflammatory joint disease, specific arthropathy, severe axis deviations or instabilities,</td>
<td>NR</td>
<td>Arm 1: N = 100 Mean age: 64.2(8.4) Placebo/sham Arm 2: N = 100 Mean age: 65.9(8.1) Hyalgan (20mg/2ml) Total treatments: 5 Time between treatment: 1 week</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean age: 65.0 SD controls: 8.3 Number of participants enrolled: 200 Number of participants in analysis: 198 Number of knees: NR Mean BMI: 25.6(3.6) % Female: 76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Study Location, Years, Name, Design, and Funding</th>
<th>Participants</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Comorbidities</th>
<th>Study Arms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huskisson et al., 1999<sup>55</sup></td>
<td>United Kingdom <1997 RCT/CCT parallel Funding: NR</td>
<td>Age Range: nr Mean age: nr SD controls: nr Number of participants enrolled: 100 Number of participants in analysis: 81 Number of knees: NR Mean BMI: nr % Female: 67</td>
<td>Diagnosis of osteoarthritis of the knee: ARA Criteria Kellgren-Lawrence(II or III) Consistent pain for 3 months Moderate to severe pain on walking</td>
<td>Current or prior receipt of glucocorticoids in affected knee Other musculoskeletal or joint disease or condition that limits mobility: Serious functional impairment at the knee, hip OA, other related joint OA, psoriasis, sacroiliitis, painful knee conditions other than OA Kellgren Lawrence IV Known or suspected joint infection Poor general health or other conditions which would prevent regular hospital attendance Skin conditions overlying the joint Severe intercurrent hepatic or renal disease or major general medical conditions</td>
<td></td>
<td>Arm 1: N = 50 Mean age: 64.8 (9.3) Placebo/sham Arm 2: N = 50 Mean age: 65.8 (8.8) Hyalgan Molecular weight: 500-730 kDa Total treatments: 5 Time between treatment: 1 week</td>
</tr>
<tr>
<td>Kahan et al., 2003<sup>36</sup></td>
<td>France 10/1998-2/2000 RCT/CCT parallel Funding: NR</td>
<td>Mean age: 66 SD controls: 10 Number of participants enrolled: 506 Number of participants in analysis: 506 Mean BMI: 28 % Female: 67.5</td>
<td>Diagnosis of osteoarthritis of the knee: ACR Kellgren-Lawrence(any) Failure of another treatment modality: Two courses of NSAID therapy, each at least 10 d long, within the last 3 months and/or a symptomatic slowacting drug taken continuously during the last 2 months Score(s) on OA asessments Pain VAS: >= 40 mm / 100 mm Minimum age: 18</td>
<td>Prior surgical procedure on affected knee: Arthroscopy, lavage, meniscectomy, etc.) within the last year; TKR ever Current or prior receipt of HA in affected knee Current or prior receipt of glucocorticoids in affected knee Inflammatory flare in the target knee (effusion with nocturnal pain, local heat or redness, morning stiffness for longer than 45 min or greater than 50% increase in the VAS pain score as compared to the previous week) Synovectomy, tibial osteotomy Surgery scheduled within last 9 months</td>
<td>Involvement of both knees: 74</td>
<td>Arm 1: N = 253 Mean age: 66 (10) Conventional treatment Arm 2: N = 253 Mean age: 66 (10) Synvisc Molecular weight: NR Total treatments: 3 Time between treatment: 1 week</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Study Location, Years, Name, Design, and Funding</td>
<td>Participants</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Comorbidities</td>
<td>Study Arms</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Karlsson et al., 2002</td>
<td>Sweden, <2002, RCT/CCT parallel, Funding: Industry</td>
<td>Age Range: NR, Mean age: reported by arm below, SD controls: reported by arm below, Number of participants enrolled: 246, Number of participants in analysis: ITT: 246 PP: 210, Number of knees: NR</td>
<td>Score(s) on OA assessment, Lequesne algofunctional index: >=10, Weight-bearing pain VAS: >=40mm, Minimum age: 60, Normal general physical exam</td>
<td>Prior surgical procedure on affected knee: Arthroscopy, arthrography, surgery less than 6 months prior to inclusion, Current or prior receipt of HA in affected knee, Current or prior receipt of glucocorticoids in affected knee, Other musculoskeletal or joint disease or condition that limits mobility: RA or other inflammatory joint disease (ACR criteria)</td>
<td>NR</td>
<td>Arm 1: N = 66 (57 PP), Mean age: 71(6), Placebo/sham, Arm 2: N = 92 (76 PP), Mean age: 72(7), Artzal (2.5 ml 1% hyaluronan), Molecular weight: 1,000 kDa, Arm 3: N = 88 (77 PP), Mean age: 70(7), Synvisc (2 ml 0.8%), Molecular weight: 7,000 kDa, Total treatments: 3, Time between treatment: 1 day</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Study Location, Years, Name, Design, and Funding</td>
<td>Participants</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Comorbidities</td>
<td>Study Arms</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>--------------</td>
<td>---</td>
<td>--</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>Khanasuk et al., 2012³⁸</td>
<td>Thailand 2011-2012 RCT/CCT parallel Funding: NR</td>
<td>Mean age: NR</td>
<td>Diagnosis of osteoarthritis of the knee:</td>
<td>Current or prior receipt of HA in affected knee</td>
<td>NR</td>
<td>Arm 1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD controls: NR</td>
<td>ACR for primary OA of the knee(NR)</td>
<td>Intention to take pain medication after injection</td>
<td></td>
<td>N = 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of participants enrolled: 32</td>
<td>Pain VAS(=3/10)</td>
<td>History of allergy to avian products</td>
<td></td>
<td>Mean age: 65.1(9.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of participants in analysis: 30</td>
<td>Kellgren-Lawrence radiological grading(= Grade II)</td>
<td></td>
<td></td>
<td>Hylan GF-20 (Synvisc)(single 6 ml injection)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of knees: NR</td>
<td>Minimum age: 45</td>
<td></td>
<td></td>
<td>Molecular weight: Reported as High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean BMI: 26</td>
<td></td>
<td></td>
<td></td>
<td>Arm 2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% Female: 80</td>
<td></td>
<td></td>
<td></td>
<td>N = 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean age: 67.0(9.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hylgan (single injection Molecular weight: Reported as Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total treatments: 1</td>
</tr>
<tr>
<td>Leopold et al., 2003³⁷</td>
<td>US 2000-2002 RCT/CCT parallel Funding: Non-industry</td>
<td>Age Range: 39-83</td>
<td>Diagnosis of osteoarthritis of the knee:</td>
<td>Current or prior receipt of HA in affected knee</td>
<td>NR</td>
<td>Arm 1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean age: NR</td>
<td>Radiographic evidence of symptomatic knee OA(NR)</td>
<td>Intention to take pain medication after injection</td>
<td></td>
<td>N = 42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD controls: NR</td>
<td>Minimum age: 18</td>
<td>History of allergy to avian products</td>
<td></td>
<td>Mean age: 64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of participants enrolled: 100</td>
<td>Dissatisfaction with prior attempts at nonoperative management modalities</td>
<td></td>
<td></td>
<td>Arm 2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of participants in analysis: 80</td>
<td></td>
<td></td>
<td></td>
<td>N = 38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of knees: NR</td>
<td></td>
<td></td>
<td></td>
<td>Mean age: 66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean BMI: CS: 29.3 HA: 28.8</td>
<td></td>
<td></td>
<td></td>
<td>Hylan G-F 20 (16mg/2ml)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% Female: CS: 56 HA: 52</td>
<td></td>
<td></td>
<td></td>
<td>Total treatments: 3 HA 1CS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Time between treatment: 1 week</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Study Location, Years, Name, Design, and Funding</td>
<td>Participants</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Comorbidities</td>
<td>Study Arms</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
<td>------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Lundsgaard et al., 2008</td>
<td>Denmark <2008 NCT00144820 RCT/CCT parallel Funding: Non-industry</td>
<td>Age Range: NR Mean age: 69.6 SD controls: 7.27 Number of participants enrolled: 251 Number of participants in analysis: 243 Mean BMI: 29.3 % Female: 52.4</td>
<td>Score(s) on OA assessments Daily knee pain on VAS (that did not respond to analgesics): 20mm/100mm Minimum age: 59 Daily</td>
<td>Prior surgical procedure on affected knee: Invasive procedures within past 6 months Current or prior receipt of glucocorticoids in affected knee Other musculoskeletal or joint disease or condition that limits mobility: RA or other inflammatory arthritis Contra-indication to hyaluronate Contra-indication to knee injection Medications that could interfere with intervention Comorbidity, e.g. psychosis or dementia that could interfere Knee infection or uric acid crystals</td>
<td>NR</td>
<td>Arm 1: Saline 2ml Arm 2: Saline 20 mL, no hyaluronate Arm 3: Hyalgan Molecular weight: NR Total treatments: 4 Time between treatment: 1 week</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Study Location, Years, Name, Design, and Funding</td>
<td>Participants</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Comorbidities</td>
<td>Study Arms</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>Pavelka et al., 2011</td>
<td>Czech Republic, France, Italy, Switzerland, the Slovak Republic and Germany November 2007 - January 2009 NCT00556608 RCT/CCT parallel Funding: Industry</td>
<td>Age Range: 41-80 Mean age: 65 SD controls: 9 Number of participants enrolled: 381 Number of participants in analysis: 354 Mean BMI: 27 % Female: 72.9</td>
<td>Diagnosis of osteoarthritis of the knee: ACR Kellgren-Lawrence(2 or 3) Duration of symptoms 3 months Failure of another treatment modality: NSAIDS Score(s) on OA assessments WOMAC pain: include 40 - 80 Minimum age: 40</td>
<td>Prior surgical procedure on affected knee: TKR, arthroplasty Current or prior receipt of HA in affected knee Current or prior receipt of glucocorticoids in affected knee Use of certain analgesics: Chronic use of NSAIDS, analgesics or narcotics Other musculoskeletal or joint disease or condition that limits mobility: Pain mainly related to femoral patellar syndrome at the target knee, no remaining joint space width at the target knee, symptomatic hip osteoarthritis or other condition that would interfere with study assessments, severe varus/valgus deformity in the target knee, history or current evidence of other joint diseases, such as inflammatory, infective or metabolic joint disease, concomitant rheumatic disease, significant injur Lymphatic stasis in the relevant limb, skin infection, disease or trauma at the injection site Initiation of target knee physical therapy in the past 3 months, initiation/ change in dose of symptomatic slow-acting drugs for osteoarthritis BMI >=32</td>
<td>Involvement of both knees: 66%</td>
<td>Arm 1: N = 192 Mean age: 65.1 (9.1) Synovial Molecular weight: 800 - 1,200 kD Arm 2: N = 188 Mean age: 64.9 Synvisc Molecular weight: 6,000 kD Total treatments: 3 Time between treatment: 1 week</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Study Location, Years, Name, Design, and Funding</td>
<td>Participants</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Comorbidities</td>
<td>Study Arms</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>Petrella et al., 2002<sup>79</sup></td>
<td>Canada < 2002 RCT/CCT parallel Funding: Industry</td>
<td>Age Range: NR Mean age: 65.5 SD controls: 9.5 Number of participants enrolled: 120 Number of participants in analysis: 108 Mean BMI: 30.7 % Female: 45.8</td>
<td>Diagnosis of osteoarthritis of the knee: Kellgren-Lawrence(1 to 3 included) Score(s) on OA assessments VAS pain 0-10 scale: 3+ Unilateral OA</td>
<td>Current or prior receipt of HA in affected knee Current or prior receipt of glucocorticoids in affected knee NSAID intolerance Bilateral symmetric inflammatory reaction</td>
<td>Involvement of both knees: 0%</td>
<td>Arm 1: N = 28 Mean age: 62.6 (9.5) Placebo/sham Arm 2: N = 25 Mean age: 67.3 (8.9) Suplasyn Molecular weight: NR Placebo pill Arm 3: N = 29 Mean age: 65.0 (9.7) Suplasyn Molecular weight: NR NSAID Arm 4: N = 26 Mean age: 66.3 (8.8) NSAID Total treatments: 3 Time between treatment: 1 week</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Study Location, Years, Name, Design, and Funding</td>
<td>Participants</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Comorbidities</td>
<td>Study Arms</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| Petrella et al., 2008¹⁷ | Canada
 <2008 | RCT/CCT parallel | | | | Arm 1:
N = 50
Mean age: 71 +/-8
Placebo/sham |
| | | | Age Range: nr | Current or prior receipt of HA in affected knee | NR | Arm 2:
N = 50
Mean age: 68 +/-6
HA dual molecular weight Molecular weight: 580–780 kDa+1.2 to 2.0 million kDa |
| | | | Mean age: 71 | Did not exhibit non-arthritis-related disease | | Arm 3:
N = 50
Mean age: 69 +/-5
HA low molecular weight Molecular weight: 500–730 kDa |
| | | | SD controls: 8 | Current or prior receipt of glucocorticoids in affected knee | | Arm 4:
N = 50
Mean age: 71+/9
HA high molecular weight Molecular weight: 6 million kDa |
| | | | Number of participants enrolled: 200 | End-stage OA in affected knee | | Total treatments: 3
Time between treatment: 1 week |
<p>| | | | Number of participants in analysis: nr | | | |</p>
<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Study Location, Years, Name, Design, and Funding</th>
<th>Participants</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Comorbidities</th>
<th>Study Arms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrella et al., 2011</td>
<td>Canada < 2011 ISRCTN98630331 RCT/CCT parallel Funding: NR</td>
<td>Age Range: NR Mean age: 70 SD controls: 8 Number of participants enrolled: 200 Number of participants in analysis: Unclear Mean BMI: 27 % Female: 57</td>
<td>Diagnosis of osteoarthritis of the knee: Kellgren-Lawrence(1 to 3 included) Score(s) on OA assessment VAS pain: 45+</td>
<td>Current or prior receipt of HA in affected knee Current or prior receipt of glucocorticoids in affected knee Use of certain analgesics: Dosage of glucosamine and/or chondroitin sulfate, and/or NSAIDs that has been stable over the preceding three months with the dosage remaining constant during the study Other musculoskeletal or joint disease or condition that limits mobility: End stage OA Active skin disease or infection in the area of the injection site Any condition/ disease which in the opinion of the investigator could interfere with patient compliance and/or interfere with the interpretation of the treatment results Contra-indication to intra-articular injection or known hypersensitivity to Sodium Hyaluronate Planned surgery on knee</td>
<td>NR</td>
<td>Arm 1: N = 50 Mean age: 71 (8) Placebo/sham Arm 2: N = 50 Mean age: 68 (6) sodium hyaluronate Molecular weight: Combined high & low weight Arm 3: N = 50 Mean age: 69 (5) sodium hyaluronate - low weight Molecular weight: 500-730 KDa Arm 4: N = 50 Mean age: 71 (9) sodium hyaluronate - high weight Molecular weight: 6000 KDa Total treatments: 3 Time between treatment: 1 week</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Study Location, Years, Name, Design, and Funding</td>
<td>Participants</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Comorbidities</td>
<td>Study Arms</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Pham et al., 2004</td>
<td>France <2004 RCT/CCT parallel Funding: NR</td>
<td>Age Range: 50+ Mean age: 64.9 SD controls: 7.7 Number of participants enrolled: 301 % Female: 65 average</td>
<td>Diagnosis of osteoarthritis of the knee: Presence of a symptomatic primary painful medial femorotibial knee OA defined by a daily pain visual analogue scale (VAS) score .30 mm in the previous month VAS for pain(>30mm in prior month) Joint space(>2mm)</td>
<td>Current or prior receipt of HA in affected knee Current or prior receipt of glucocorticoids in affected knee Use of certain analgesics: Diacerein or other antiinflammatories Other musculoskeletal or joint disease or condition that limits mobility: Severe OA (jjoint space <2mm), secondary knee OA, Paget's Contraindications to HA Need for surgery</td>
<td>NR</td>
<td>Arm 1: N = 85 Mean age: 64.9 (7.7) Placebo/sham Arm 2: N = 131 Mean age: 71.0 NRD101 Molecular weight: 1.900 kDa Arm 3: N = 85 Mean age: 64.5 Diacerein Total treatments: 12? (3 course every 3 months for a year) Time between treatment: 1 week</td>
</tr>
<tr>
<td>Raman et al., 2008</td>
<td>UK < 2008 RCT/CCT parallel Funding: Non-industry</td>
<td>Age Range: 42-82 Mean age: 67.2 SD controls: NR Number of participants enrolled: 392 Number of participants in analysis: 380 Mean BMI: NR % Female: 68</td>
<td>Diagnosis of osteoarthritis of the knee: Score(s) on OA assesments VAS (10 point scale): 6+ Preferred tx strategy was viscosupplementation</td>
<td>Prior surgical procedure on affected knee Current or prior receipt of HA in affected knee Current or prior receipt of glucocorticoids in affected knee Bilateral OA</td>
<td>NR</td>
<td>Arm 1: N = 199 Mean age: NR Synvisc (Hylan GF 20) Molecular weight: 6000 kDa Arm 2: N = 193 Mean age: NR Hyalgan Molecular weight: 500 - 730 kDa Total treatments: 3 for Synvisc, 5 for Hyalgan Time between treatment: 1 week</td>
</tr>
<tr>
<td>Author, Year</td>
<td>Study Location, Years, Name, Design, and Funding</td>
<td>Participants</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Comorbidities</td>
<td>Study Arms</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>Roman et al., 2000<sup>79</sup></td>
<td>Spain < 2000 RCT/CCT parallel Funding: NR</td>
<td>Age Range: 41-86 Mean age: 65.14 SD controls: 9.77 Number of participants enrolled: 49 Mean BMI: NR % Female: 83.7</td>
<td>Diagnosis of osteoarthritis of the knee: Kellgren-Lawrence(2 or 3 included)</td>
<td>NR</td>
<td>NR</td>
<td>Arm 1: N = 30 Mean age: NR Adant Molecular weight: 900 kD Arm 2: N = 19 Mean age: NR Hyalgan Molecular weight: 800 kD Total treatments: 5 Time between treatment: 1 week</td>
</tr>
<tr>
<td>Tamir et al., 2001<sup>80</sup></td>
<td>Israel < 2001 RCT/CCT parallel Funding: NR</td>
<td>Age Range: NR Mean age: 71 SD controls: NR Number of participants enrolled: 49 Number of participants in analysis: Unclear Mean BMI: NR % Female: 73.5</td>
<td>Diagnosis of osteoarthritis of the knee: Altman Kellgren-Lawrence(2 to 4 included) Minimum age: 60 Maximum age: 85</td>
<td>Prior surgical procedure on affected knee: No surgery ever, no arthroscopy within 6 months Current or prior receipt of HA in affected knee Current or prior receipt of glucocorticoids in affected knee Other musculoskeletal or joint disease or condition that limits mobility: RA, other inflammatory arthritis, OA of hip, OA from fracture of knee Skin conditions on knee</td>
<td>NR</td>
<td>Arm 1: N = 24 Mean age: 70 Placebo/sham Arm 2: N = 25 Mean age: 71 Bio-Hy Molecular weight: 3000 kDa Total treatments: 5 Time between treatment: 1 week</td>
</tr>
</tbody>
</table>
Appendix D. Data Abstraction Tools

1. DJD Data Abstraction Tool
2. Cochrane Risk of Bias Tool for Randomized Controlled Trials, Adapted
3. Ottawa-Newcastle Risk of Bias Assessment for Observational Studies, Adapted
4. Assessment of Reporting of Adverse Events (Questions from McHarms)
5. AMSTAR Assessment of Reporting Quality for Systematic Reviews
1. DJD Data Abstraction Tool

Should this article have been previously excluded based on the exclusion criteria?

Do you need another article to complete this form?

- Yes (stop until Aneesa links the article; specify reference number) []
- No []

Does this article report on part of a larger study or a follow-up to a previous study?

- Yes []
- No []

Does the larger study have a name?

- Yes []
- No []

When did this study occur? (e.g. dates or year of recruitment to date of completion)

- Years (specify) []
- NR []
Location(s):

- US
- Not US (specify country)
- Multi-country

Study Design (choose one):

- RCT/CCT parallel
- RCT/CCT crossover
- Open or uncontrolled trial
- Population-based prospective cohort study
- Case control study
- Case study
- Case series
- Database analysis

Does this study report on AE outcomes?

- Yes
- No

Participants:

D-3
If not reported, please indicate "NR"

- Age range: ___ to ___ (specify range)
- Mean age (whole group if reported) (specify mean)
- Standard Deviation (SD) controls (specify SD)
- Number of participants enrolled (specify number)
- Number of participants in analysis if different from enrolled (specify number)
- Number of knees if reported that way (specify)
- Mean BMI (specify)
- % female (specify %)
- Not Reported

Inclusion criteria for participation in the study:

- Diagnosis of osteoarthritis of the knee (specify diagnostic modality and cutoff scores, if relevant)
- Duration of symptoms
- Failure of another treatment modality (specify)
- Score(s) on OA assessments
- Age >= ___ (specify inclusion of age)
- Age < ___ (specify inclusion of age)
- Other 1 (specify)
- Other 2 (specify)
- Other 3 (specify)
- Other 4 (specify)
- Other 5 (specify)
- Not Reported
Exclusion criteria for the study:

- Prior surgical procedure on affected knee (specify type)
- Current or prior receipt of HA in affected knee
- Current or prior receipt of glucocorticoids in affected knee
- Use of certain analgesics (specify)
- Other musculoskeletal or joint disease or condition that limits mobility (rheumatoid arthritis, osteoporosis, hip OA)
- Other chronic disease that limits mobility (advanced CVD, advanced COPD, Parkinsons...)
- Obesity
- Age > ___ (specify exclusion of age)
- Age < ___ (specify exclusion of age)
- Other 1 (specify)
- Other 2 (specify)
- Other 3 (specify)
- Other 4 (specify)
- Other 5 (specify)
- Not Reported

Comorbidities:

- Obesity (specify % of participants)
- Involvement of both knees (specify % of participants)
- Diabetes (specify % of participants)
- Other 1 (specify)
- Other 2 (specify)
Intervention

How many arms are there?

Control group (Arm 1)
- Number of participants (specify number)
- Mean age (SD) (specify number)
- HA Brand or chemical name [indicate name]
- Additional treatment
 - None
 - Placebo/sham
 - NSAID
 - Opioid pain medications
 - Corticosteroid injection
 - Corticosteroid oral
 - Plasma enriched with growth factors
 - Other (specify)

Intervention (Arm 2)
- Number of participants (specify number)
- Mean age (SD) (specify number)
- HA Brand or chemical name [indicate name]
- Additional treatment
Intervention (Arm 3)

☐ Number of participants (specify number)
☐ Mean age (SD) (specify number)
☐ HA Brand or chemical name [indicate name]
☐ Additional treatment

Intervention (Arm 4)

☐ Number of participants (specify number)
☐ Mean age (SD) (specify number)
☐ HA Brand or chemical name [indicate name]
☐ Additional treatment

Intervention (Arm 5)

☐ Number of participants (specify number)
☐ Mean age (SD) (specify number)
☐ HA Brand or chemical name [indicate name]
☐ Additional treatment

How many total treatments did participants receive?

If more than one treatment, how far apart?

Number Unit

Outcomes (choose all that apply):
Arthroplasty (or time to arthroplasty or delay to arthroplasty or avoidance of...)

Function:

Quality of life:

Adverse events/harms

Other included outcomes 1 (specify outcome)

Other included outcomes 2 (specify outcome)

Other included outcomes 3 (specify outcome)

Other included outcomes 4 (specify outcome)

Other included outcomes 5 (specify outcome)

Other included outcomes 6 (specify outcome)

Funding:

Industry

Non Industry

Not Reported

Did the authors have any conflict of interest?

- Yes
- No
- NR

Clear Response
Does this article need another form to be completed for the same article (i.e., article reports more than one study)?

- Yes (please complete another form)
- No Clear Response

Reference Mining

- Yes (specify reference number)
- No Clear Response

Needs to discuss

- Yes
- No Clear Response

Has this form been reconciled?*

*Indicate "yes" only if this form has been reconciled. Programmer will pull data from this form.

- Yes
- No Clear Response

Comments
2. Cochrane Risk of Bias Tool for Randomized Controlled Trials, Adapted

1. **Sequence Generation:** Describe the method used to generate the allocation sequence in sufficient detail to allow an assessment of whether it should produce comparable groups.

Was the participant recruitment and assignment to condition (allocation sequence) adequately generated? (a “no” would mean, e.g., that care providers assigned patients to treatment arms or allowed patients to self-select treatment arms).

- Low risk (yes)
- High risk (no)
- Unclear

 Clear Response

2. **Allocation concealment:** Describe the method used to conceal the allocation sequence in sufficient detail to determine whether intervention allocations could have been foreseen in advance of, or during, enrolment.

Did the study report a reasonable plan for concealment of allocation? (e.g., use of an opaque envelope to store the allocation key).

- Low risk
- High risk
- Unclear

 Clear Response

3. **Blinding of participants, personnel and outcome assessors** Assessments should be made for each main outcome (or class of outcomes): Describe all measures used, if any, to blind study participants and personnel from knowledge of which intervention a participant received. Provide any information relating to whether the intended blinding was effective.

 3a. Did the study report adequate blinding of participants (was the control group appropriate for the intervention)?

- Low risk
- High risk
- Unclear

 Clear Response

 3b. Did the study report adequate blinding of care providers (if different from outcome assessors)
3c. Did the study report adequate blinding of outcome assessors (including assessors of AEs)?

- Low risk
- High risk
- Unclear

Clear Response

4. **Incomplete outcome data** *Assessments should be made for each main outcome (or class of outcomes)*

4a. Was the loss to follow-up less than 20%?

- Low risk
- High risk
- Unclear

Clear Response

4b. Were loss-to-follow-up or other missing data explained?

- Low risk
- High risk
- Unclear

Clear Response

4c. Did the analysis include:

- a) all participants randomized to particular groups
- b) only those who completed the treatment regimen
- c) were crossovers counted as participants in the group they crossed into
5. **Selective outcome reporting**: Did the authors describe measuring outcomes for which they then reported no actual results?

- Low risk
- High risk
- Unclear

6. **Other sources of bias**: State any important concerns about bias not addressed in the other domains in the tool

6a. Were findings reported as percent who responded (vs. change in assessment score from baseline)?

- Yes
- No
- Unclear
- N/A

6b. Was a **standardized measurement tool** used (i.e., WOMAC, IALs/ADLs, etc)

- Low risk
- High risk
- Unclear

6c. Did the authors describe a **washout period** of at least 3 months for steroid injections or 6 months for Hyaluronic acid?

- Low risk
- High risk
- Unclear

D-12
6d. Were co-interventions either avoided in the trial design or did the authors ensure that they were similar between the index and control groups?

- Low risk
- High risk
- Unclear

Clear Response

Have you reconciled this form with the second reviewer?

- Yes
- No

Clear Response
3. Ottawa-Newcastle Risk of Bias Assessment for Observational Studies, Adapted

Risk of Bias Assessment for Observational Studies

1. Representativeness/appropriateness of participant selection
 Random or consecutive recruitment=Y
 Convenience sample=N
 Not reported or unclear

2. Control for baseline differences in cohorts
 Similarity of groups at baseline or adjustment in analyses=Y
 No attempt to control or adjust=N
 Not reported=NR

3. Loss to followup
 Explanation provided for loss of participants and/or intention to treat=Y
 No explanation or no mention of original number=N

4. Masking of exposure to outcomes assessor
 Description of masking=Y
 No masking or no description =N

5. Ascertainment of condition
 Description of ascertainment/diagnostic criteria=Y
 No description or patient self-report=N

6. Documentation of other treatment modalities
 Documentation=Y
 No documentation=N

7. Extent to which valid outcomes are described
 Adequate description of outcome=Y
 Insufficient detail regarding outcome or follow-up time=N

8. Prespecification of harms, mode of harms collection
 Description of a list of harms assessed or monitoring=Y
 No such description or passive harms collection=N
 No AE collection=NA

9. Financial COI
 Funding source described and not manufacturer=Y
 Funding source described as manufacturer=N
 No funding source mention=NR
10 Investigator COI reported?
No COI=Y
COI=N
Not reported=NR
4. Adverse Events (Questions from McHarms)

1. Were the harms PRE-DEFINED using standardized or precise definitions?

Harms can be defined as the totality of adverse consequences of an intervention or therapy. Harms are the opposite of benefits, against which they are directly compared. The balance between the benefit(s) and harm(s) of an intervention (i.e. drug or surgery) is ideally used to determine its efficacy or effectiveness.

Pre-defined indicates that the harms that were expected are explicitly defined prior to the collection of these expected events. For example, if bleeding is listed as a harmful event, the criteria by which they determine the bleeding (i.e. body location, type, or amount of blood loss that counts as an event, etc) should be specified.

Standardized classification of harms can be derived from any of the following:

1) reference to standard terminology or classifications of harms from a recognized external organization(s)(such as government regulatory or health agencies. Examples of standardized terminology for harms includes, WHO-ART, MEDra, HTA report on the Measurement and Monitoring of Surgical Adverse Events)

2) previously explicitly defined classifications of harms in the literature, or

3) based on pre-specified clinical criteria, or

4) pre-specified laboratory test (may not need to have a specific cut-off level specified in all cases)

In some instances only some of the harms identified in a study will be precisely defined. In
this case, there must be some judgement.

- Yes
- No
- Unclear

Clear Response

2. Was the mode of harms collection specified as ACTIVE?

Active ascertainment of harms indicates that participants are asked about the occurrence of specific harms in structured questionnaires or interviews or pre-defined laboratory or diagnostic tests and usually performed at pre-specified time intervals.

Passive ascertainment of harms indicates that study participants spontaneously report (on their own initiatives) or are allowed to report harmful events not probed with active ascertainment.

- Yes
- No
- Unclear

Clear Response

3. Was the potential occurrence of harmful events collected at pre-specified intervals; for example, the occurrence of post-operative complications were evaluated on a daily basis within 30 days of the surgery?

- Yes
- No
- Unclear

Clear Response

4. Did the author(s) specify the NUMBER for each TYPE of harmful event for each study group?
For example, the study reported 3 types of harmful events (nausea, vomiting, and bleeding); for each of these events the frequency was reported for each study group.

- Yes
- No
- Unclear

Clear Response

5. Was the TOTAL NUMBER of participants affected by harms specified for each study arm?

- Yes
- No
- Unclear

Clear Response

6. If the study reported that there were no serious AE’s reported did they define serious AEs?

- Yes
- No
- Unclear
- N/A

Clear Response

Have you reconciled this form with the second reviewer?

- Yes
- No

Clear Response

D-18
5. AMSTAR Assessment of Reporting Quality for Systematic Reviews

1. Was an 'a priori' design provided?
The research question and inclusion criteria should be established before the conduct of
the review.

Note: Need to refer to a protocol, ethics approval, or pre-determined/a priori published
research objectives to score a “yes.”
□ Yes
□ No
□ Can't answer
□ Not applicable

2. Was there duplicate study selection and data extraction?
There should be at least two independent data extractors and a consensus procedure for
disagreements should be in place.

Note: 2 people do study selection, 2 people do data extraction, consensus process or one
person checks the other’s work.
□ Yes
□ No
□ Can't answer
□ Not applicable

3. Was a comprehensive literature search performed?
At least two electronic sources should be searched. The report must include years and
databases used (e.g., Central, EMBASE, and MEDLINE). Key words and/or MESH terms
must be stated and where feasible the search strategy should be provided. All searches
should be supplemented by consulting current contents, reviews, textbooks, specialized
registers, or experts in the particular field of study, and by reviewing the references in
the studies found.

Note: If at least 2 sources + one supplementary strategy used, select “yes” (Cochrane
register/Central counts as 2 sources; a grey literature search counts as supplementary).
□ Yes
□ No
□ Can't answer
□ Not applicable

4. Was the status of publication (i.e. grey literature) used as an inclusion
criterion?
The authors should state that they searched for reports regardless of their publication
type. The authors should state whether or not they excluded any reports (from the
systematic review), based on their publication status, language etc.
Note: If review indicates that there was a search for “grey literature” or “unpublished literature,” indicate “yes.” SIGLE database, dissertations, conference proceedings, and trial registries are all considered grey for this purpose. If searching a source that contains both grey and non-grey, must specify that they were searching for grey/unpublished lit.

□ Yes
□ No
□ Can't answer
□ Not applicable

5. Was a list of studies (included and excluded) provided?
A list of included and excluded studies should be provided.

Note: Acceptable if the excluded studies are referenced. If there is an electronic link to the list but the link is dead, select “no.”

□ Yes
□ No
□ Can't answer
□ Not applicable

6. Were the characteristics of the included studies provided?
In an aggregated form such as a table, data from the original studies should be provided on the participants, interventions and outcomes. The ranges of characteristics in all the studies analyzed e.g., age, race, sex, relevant socioeconomic data, disease status, duration, severity, or other diseases should be reported.

Note: Acceptable if not in table format as long as they are described as above.

□ Yes
□ No
□ Can't answer
□ Not applicable

7. Was the scientific quality of the included studies assessed and documented?
'A priori' methods of assessment should be provided (e.g., for effectiveness studies if the author(s) chose to include only randomized, double-blind, placebo controlled studies, or allocation concealment as inclusion criteria); for other types of studies alternative items will be relevant.

Note: Can include use of a quality scoring tool or checklist, e.g., Jadad scale, risk of bias, sensitivity analysis, etc., or a description of quality items, with some kind of result for EACH study (“low” or “high” is fine, as long as it is clear which studies scored “low” and which scored “high”; a summary score/range for all studies is not acceptable).

□ Yes
□ No
□ Can't answer
□ Not applicable
8. Was the scientific quality of the included studies used appropriately in formulating conclusions?
The results of the methodological rigor and scientific quality should be considered in the analysis and the conclusions of the review, and explicitly stated in formulating recommendations.

Note: Might say something such as “the results should be interpreted with caution due to poor quality of included studies.” Cannot score “yes” for this question if scored “no” for question 7.

□ Yes
□ No
□ Can't answer
□ Not applicable

9. Were the methods used to combine the findings of studies appropriate?
For the pooled results, a test should be done to ensure the studies were combinable, to assess their homogeneity (i.e., Chi-squared test for homogeneity, I²). If heterogeneity exists a random effects model should be used and/or the clinical appropriateness of combining should be taken into consideration (i.e., is it sensible to combine?).

Note: Indicate “yes” if they mention or describe heterogeneity, i.e., if they explain that they cannot pool because of heterogeneity/variability between interventions.

□ Yes
□ No
□ Can't answer
□ Not applicable

10. Was the likelihood of publication bias assessed?
An assessment of publication bias should include a combination of graphical aids (e.g., funnel plot, other available tests) and/or statistical tests (e.g., Egger regression test, Hedges-Olken).

Note: If no test values or funnel plot included, score “no”. Score “yes” if mentions that publication bias could not be assessed because there were fewer than 10 included studies.

□ Yes
□ No
□ Can't answer
□ Not applicable

11. Was the conflict of interest included?
Potential sources of support should be clearly acknowledged in both the systematic review and the included studies.

Note: To get a “yes,” must indicate source of funding or support for the systematic review.
review AND for each of the included studies.

☐ Yes
☐ No
☐ Can't answer
☐ Not applicable

Additional notes (in italics) made by Michelle Weir, Julia Worswick, and Carolyn Wayne based on conversations with Bev Shea and/or Jeremy Grimshaw in June and October 2008 and July and September 2010.
Appendix E. Non-English Language Article Abstracts Reviewed

Non-English Language Articles with English Abstracts: Assessment of a Random Selection

<table>
<thead>
<tr>
<th>ID/ Author, year, language</th>
<th>Design</th>
<th>Intervention</th>
<th>N, participant demographics</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>161/Not reported, 2012, Finnish</td>
<td>Care guidelines</td>
<td>Multiple</td>
<td>Not applicable (NA)</td>
<td>NA</td>
</tr>
<tr>
<td>180/Alhoff, 1998, German</td>
<td>CCT</td>
<td>HA vs. std care, 6 months</td>
<td>179 gonarthrosis patients</td>
<td>Cost-effectiveness in terms of treatment cost and productivity, Lequesne and Euroquol for pain and mobility. 92.4% of all patients under HYA achieved optimum values of Euroquol for general satisfaction vs. 42.9% in the reference group</td>
</tr>
<tr>
<td>254/Borras-Verdera, 2012, Spanish</td>
<td>Open uncontrolled trial</td>
<td>1 injection HA + mannitol, periodic followup (FU) for 6 months</td>
<td>79 pts. with painful knee OA</td>
<td>VAS WOMAC for pain and joint function, safety, need for rescue medication: % of patients who improved + effect A significant reduction in joint pain, stiffness and functional disability compared with baseline was observed at every follow-up visit (P<.001). Joint function improved by 38.7% on Day 30, reaching 47.5% on Day 180</td>
</tr>
<tr>
<td>296/Chen, 2002, Chinese</td>
<td>Open uncontrolled trial</td>
<td>3 weekly HA injections, 1-6 month FU</td>
<td>96 pts</td>
<td>Lysholm scoring, clinical signs, mobility, safety: % of patients who improved + outcome obvious improvements in the signs and function of knee in 39 patients (40.6%), only some improvements in 48 patients (50.0%), and no obvious improvements in 47 patients.</td>
</tr>
<tr>
<td>Reference</td>
<td>Study Design</td>
<td>Intervention</td>
<td>Number</td>
<td>Outcome Studies</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
<td>---</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>335/Dai, 2002, Chinese</td>
<td>Controlled trial</td>
<td>Weekly HA injections, variable number (arthroscopy or open)</td>
<td>310</td>
<td>Average VAS score for pain, time to maximum painless ROM after arthroscopy + effect. The VAS score of patients in the treatment group was significant lower than that of the control group. The period to the maximal painless ROM of the joint was 6 days in the treatment group after open operation, while 9 days in the control group</td>
</tr>
<tr>
<td>342/Diehl, 2013, German</td>
<td>Review</td>
<td>Knee OA: Multiple treatment modalities</td>
<td>NA</td>
<td>NA (no real conclusions except that HA is safe and provide shortterm symptom relief)</td>
</tr>
<tr>
<td>348/Dougados, 1994/French</td>
<td>Evaluation of arthroscopy to assess cartilage lesions and changes due to treatment (chondroscopy)</td>
<td>Preliminary study of repeated HA injections to test applicability, sensitivity of chondroscopy to visualize changes in cartilage</td>
<td>Not reported</td>
<td>Not relevant</td>
</tr>
<tr>
<td>379/Fukuda, 2004, Japanese</td>
<td>Non-systematic review</td>
<td>HA injection</td>
<td>Findings suggest HA effective for joint cellular and immune function but insufficient evidence on its effect on progression</td>
<td></td>
</tr>
<tr>
<td>380/Gadek, 2011, Polish</td>
<td>No study details</td>
<td>HA injection (Suplasyn)</td>
<td>Not reported</td>
<td>Study "reconfirmed effectiveness and safety..." No data in abstract</td>
</tr>
<tr>
<td>381/Galus, 2006, Polish</td>
<td>Non-systematic review on uses of HA</td>
<td></td>
<td>No mention of efficacy</td>
<td></td>
</tr>
<tr>
<td>409/Gu, 2011, Chinese</td>
<td>Non-systematic review on use of HA</td>
<td></td>
<td>Mentions evidence from insurers</td>
<td></td>
</tr>
<tr>
<td>422/He, 2012</td>
<td>Case control study (really a trial) of HA + exercise vs. HA</td>
<td></td>
<td>No useful findings for this report, as HA was control</td>
<td></td>
</tr>
<tr>
<td>431/Heybeli 2008</td>
<td>Post arthroscopic HA vs. no treatment</td>
<td>Post-surgical Orthovisc injection</td>
<td>67 patients 40-65 years of age</td>
<td>Improvement in pain scores at 6 weeks did not differ between the two groups (HA 21%,</td>
</tr>
<tr>
<td>Study ID</td>
<td>Type</td>
<td>Comparator</td>
<td>Patients</td>
<td>Results</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>443/ Hu 2006</td>
<td>RCT</td>
<td>HA vs. ligustrazine, 5 tx, 63 month followup</td>
<td>71 cases (82 knees)</td>
<td>There was significant decrease in Lequesne's index in SH group after the treatment (P<0.01), but not in LI group (P>0.05). Three weeks later, there was significant decrease in Lequesne's index in both groups after the treatment (P<0.01), with no significant difference between SH and LI group (P>0.05). After the 5-week treatment, the efficacy rate of the LI group was 82.1%, and that of the SH group was 87.2%</td>
</tr>
<tr>
<td>466/ Ishikawa 2002</td>
<td>NSR</td>
<td>HA for knee and shoulder</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>517/Krocker 2006</td>
<td>Uncontrolled trial</td>
<td>Single injection of Durolane, synthetic HA, 24 weeks followup</td>
<td>50 patients with primary OA</td>
<td>KOOS, VAS, and EQ-5D, as well as motion of the knee. At 2 wks: the subjective function of knee and quality of life had increased significantly. At 24 wks, all parameters increased significantly (quality of life and activity +19%; range of motion active 109 vs. 115 degrees; pain, 55 vs. 41 mm (VAS); all p<0.01)</td>
</tr>
<tr>
<td>520/Kuiper-Geertsma 2000</td>
<td>NSR</td>
<td>HA for knee and shoulder</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>542/Li 2011</td>
<td>RCT</td>
<td>Comparison of PRP and HA: 3 injections at 3-week intervals, 6-month followup</td>
<td>30 patients</td>
<td>International Knee Documentation Committee (IKDC) score, WOMAC score, and Lequesne index significant differences in IKDC score, WOMAC score, and</td>
</tr>
</tbody>
</table>
Lequesne index between pre- and post-injection in 2 groups (P < 0.05); no significant difference was found between different time points (3, 4, and 6 months) in test group (P > 0.05), while significant differences were found between the postoperative 6th month and the postoperative 3rd and 4th months in control group (P < 0.05). There was no significant difference in IKDC score, WOMAC score, and Lequesne index between 2 groups within 4 months (P > 0.05), but the effectiveness of test group was significantly better than that of control group at 6 months after injection (P < 0.05).

<table>
<thead>
<tr>
<th>ID</th>
<th>Study Details</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>544/ Li 2009, Chinese</td>
<td>Uncontrolled trial of acupuncture effect on HA</td>
<td>NR</td>
</tr>
<tr>
<td>545/Liang 2010</td>
<td>Double blind placebo controlled RCT</td>
<td>HA vs. CS? , duration not reported Sample size unknown Findings unclear: HA better than CS?</td>
</tr>
<tr>
<td>ID #546 Ling 2002, NSR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDs #563, 568, NSRs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID#578 Mar 2013 Spanish</td>
<td>Dataset analysis and modeling of 10-year budget impact</td>
<td>HA injection Patients awaiting knee replacement Modeling estimates that HA can delay TKR by 2.67 years. Leading to significant cost saving</td>
</tr>
<tr>
<td>ID# 587 Marson 2007 Italian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID# 602 Menshikova 2007 Russian</td>
<td>Uncontrolled trial</td>
<td>ostenil (HA) 60 OA patients, mean age 65 Significant improvement was seen in 60% patients. Pain and stiffness in the knee joint relieved 2-fold. The function improved less. OA severity by Leken's index decreased by two degrees. 20% patients stopped</td>
</tr>
<tr>
<td>ID# 616 Mitner 2001 German</td>
<td>Controlled trial (patients were own controls; blinding unclear)</td>
<td>HA, 5 weekly injections</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
</tbody>
</table>

Intake of NAD, 32% had no need in taking NAD regularly. Subjective and objective assessment (by the patient and by the doctor) of the symptoms severity improved twice. Twelve months later the intake of NAD, 32% had no need in taking NAD regularly. Subjective and objective assessment (by the patient and by the doctor) of the symptoms severity improved twice. Twelve months later the intake of NAD, 32% had no need in taking NAD regularly. Subjective and objective assessment (by the patient and by the doctor) of the symptoms severity improved twice. Twelve months later the intake of NAD, 32% had no need in taking NAD regularly. Subjective and objective assessment (by the patient and by the doctor) of the symptoms severity improved twice. Twelve months later the intake of NAD, 32% had no need in taking NAD regularly. Subjective and objective assessment (by the patient and by the doctor) of the symptoms severity improved twice. Twelve months later the

634/Navarro 2006 Spanish
Uncontrolled trial
HA, 5 weekly injections
111 patients
Significant improvement in all efficacy variables

642/Noain 2002 Spanish
Case reports
2 reports of acute local reactions

644/Nozaki 2002 Japanese
NSR

647/Okuda 1994 Japanese
Not OA, not study of HA
Appendix F. Table Hyaluronic Acid Products Indicated for Treatment of OA of the Knee but Not Approved in the US

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Molecular Weight</th>
<th>Source</th>
<th>US Equivalent</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adant</td>
<td>900 kD</td>
<td>Synthetic *</td>
<td>None</td>
<td>Meiji Seika Pharma Co., Ltd. Japan</td>
</tr>
<tr>
<td>Artz</td>
<td>620-1170kD</td>
<td>Avian</td>
<td>Supartz</td>
<td>Seikagaku Corporation Japan</td>
</tr>
<tr>
<td>BioHy</td>
<td>600-3000kD</td>
<td>Synthetic</td>
<td>Euflexxa</td>
<td>Biotechnology General Corp./Savient</td>
</tr>
<tr>
<td>Durolane</td>
<td>1000kD</td>
<td>Avian</td>
<td>None</td>
<td>Q-Med</td>
</tr>
<tr>
<td>Go-on</td>
<td>800-1500kD</td>
<td>Synthetic</td>
<td>None</td>
<td>Rottapharm</td>
</tr>
<tr>
<td>Hyaject</td>
<td>1500kD</td>
<td>Synthetic</td>
<td>Unclear</td>
<td>Ormed Gmbh Germany</td>
</tr>
<tr>
<td>Hyalart</td>
<td>750kD</td>
<td>Avian</td>
<td>Hylgan?</td>
<td>MEDA Manufacturing GmbH</td>
</tr>
<tr>
<td>Hyalubrix</td>
<td>1500-3200kD</td>
<td>Synthetic</td>
<td>None</td>
<td>Fidia</td>
</tr>
<tr>
<td>Hylan GF-20</td>
<td>600kD</td>
<td>Avian</td>
<td>Synvisc</td>
<td></td>
</tr>
<tr>
<td>Hyruan</td>
<td>3000kD</td>
<td>n/a</td>
<td>None</td>
<td>LG Life Science</td>
</tr>
<tr>
<td>Ostenil</td>
<td>1200-1400kD</td>
<td>Synthetic</td>
<td>None</td>
<td>TRB Chemedica Ltd. UK</td>
</tr>
<tr>
<td>Sinovial</td>
<td>800-1200kD</td>
<td>Avian</td>
<td>None</td>
<td>IBSA Gulf Kingdom of Saudi Arabia</td>
</tr>
<tr>
<td>Suplasyn</td>
<td>500-730kD</td>
<td>Synthetic</td>
<td>Hylgan</td>
<td>Alveda/Mylan</td>
</tr>
</tbody>
</table>

Purified from a cultured strain of Streptococcus via fermentation
Appendix G. Strength of Evidence Assessment
Required Domains: Definitions and Scores

Appendix Table. Grading the strength of a body of evidence: Required domains and their definitions*

<table>
<thead>
<tr>
<th>Domain</th>
<th>Definition and Elements</th>
<th>Score and Application</th>
</tr>
</thead>
</table>
| Study Limitations | Study limitations are the degree to which the included studies for a given outcome or comparison have a high likelihood of adequate protection against bias (i.e., good internal validity), assessed through two main elements:
 • Study design (e.g., RCTs or observational studies)
 • Aggregate quality of the studies under consideration.
 Information for this determination comes from the rating of quality (good/fair/poor) done for individual studies | Use one of three levels of, separately by type of study design:
 • Low level of study limitations
 • Medium level of study limitations
 • High level of study limitations |
| Consistency | The principal definition of consistency is the degree to which reported effect sizes from included studies appear to have the same direction of effect. This can be assessed through two main elements:
 • Effect sizes have the same sign (that is, are on the same side of "no effect")
 • The range of effect sizes is narrow.
 As noted in the text, single-study evidence bases (even mega-trials) cannot be judged with respect to consistency. In that instance, use "Consistency unknown (single study)." | Use one of three levels of consistency:
 • Consistent (i.e., no inconsistency)
 • Inconsistent
 • Unknown or not applicable (e.g., single study)
 As noted in the text, single-study evidence bases (even mega-trials) cannot be judged with respect to consistency. In that instance, use "Consistency unknown (single study)."

<table>
<thead>
<tr>
<th>Domain</th>
<th>Definition and Elements</th>
<th>Score and Application</th>
</tr>
</thead>
</table>
| Directness | The rating of directness relates to whether the evidence links the interventions directly to health outcomes. For a comparison of two treatments, directness implies that head-to-head trials measure the most important health or ultimate outcomes. Two types of directness, which can coexist, may be of concern: Evidence is indirect if:
 • It uses intermediate or surrogate outcomes instead of health outcomes. In this case, one body of evidence links the intervention to intermediate outcomes and another body of evidence links the intermediate to most important (health or ultimate) outcomes.
 • It uses two or more bodies of evidence to compare interventions A and B -- e.g., studies of A vs. placebo and B vs. placebo, or studies of A vs. C and B vs. C but not A vs. B. | Score dichotomously as one of two levels directness
 • Direct
 • Indirect
 If indirect, specify which of the two types of indirectness account for the rating (or both, if that is the case) -- namely, use of intermediate/surrogate outcomes rather than health outcomes, and use of indirect comparisons. Comment on the potential weaknesses caused by, or inherent in, the indirect analysis. The EPC should note if both direct and indirect evidence was available, particularly when indirect evidence supports a small body of direct evidence. |
| Precision | Precision is the degree of certainty surrounding an effect estimate with respect to a given outcome (i.e., for each outcome separately)
 If a meta-analysis was performed, this will be the confidence interval around the summary effect size. | Score dichotomously as one of two levels of precision:
 • Precise
 • Imprecise
 A precise estimate is an estimate that would allow a clinically useful conclusion. An imprecise estimate is one for which the confidence interval is wide enough to include clinically distinct conclusions. For example, results may be statistically compatible with both clinically important superiority and inferiority (i.e., the direction of effect is unknown), a circumstance that will preclude a valid conclusion. |
| Reporting bias results from selectively publishing or reporting research findings based on the favorability of direction or magnitude of effect. It includes:
 • Study publication bias, i.e., nonreporting of the full study.
 • Selective outcome reporting bias, i.e., nonreporting (or incomplete reporting) of planned outcomes or reporting of unplanned outcomes.
 • Selective analysis reporting bias, i.e., reporting of one or more favorable analyses for a given outcome while not reporting other, less favorable analyses. | Score as one of two levels:
 • Suspected
 • Undetected
 Reporting bias is suspected when:
 • Testing for funnel plot asymmetry demonstrates a substantial likelihood of bias,
 And/or
 • A qualitative assessment suggests the likelihood of missing studies, |
many factors—e.g. availability of study protocols, unpublished study documents, and patient-level data. Detecting such bias is likely with access to all relevant documentation and data pertaining to a journal publication, but such access is rarely available. Because methods to detect reporting bias in observational studies are less certain, this guidance does not require EPCs to assess it for such studies.

Undetected reporting bias includes all alternative scenarios analyses, or outcomes data that may alter the conclusions from the reported evidence.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Definition and Elements</th>
<th>Score and Application</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>many factors—e.g. availability of study protocols, unpublished study documents, and patient-level data. Detecting such bias is likely with access to all relevant documentation and data pertaining to a journal publication, but such access is rarely available. Because methods to detect reporting bias in observational studies are less certain, this guidance does not require EPCs to assess it for such studies.</td>
<td>Undetected reporting bias includes all alternative scenarios analyses, or outcomes data that may alter the conclusions from the reported evidence.</td>
</tr>
</tbody>
</table>
Appendix H. Tools to Measure Function
Index of Severity for Osteoarthritis of the Hip by Lequesne et al.

Overview:

Lequesne et al developed an index of severity for osteoarthritis for the hip (ISH). This can be used to assess the effectiveness of therapeutic interventions.

Sections for index:

(1) pain or discomfort

(2) maximum distance walked

(3) activities of daily living

<table>
<thead>
<tr>
<th>Pain or Discomfort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>pain or discomfort during nocturnal bedrest</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>duration of morning stiffness or pain after getting up</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>remaining standing for 30 minutes increases pain</td>
</tr>
<tr>
<td>pain on walking</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>pain or discomfort in sitting position for 2 hours</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

where:

- A modification of a 1991 version was to have the duration of morning stiffness scored 0 if it was 1 minute or less and 1 if it was from 1 to less than 15 minutes.

- Pain on walking in a 1991 version expanded "early after starting" to "after initial ambulation and increasingly with continued ambulation"
II. Maximum Distance Walked

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Finding</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum distance walked</td>
<td>unlimited</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>> 1 kilometer but limited</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>about 1 kilometer (about 15 minutes)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>about 500 - 900 meters (about 8-15 minutes)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>from 300 - 500 meters</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>from 100 - 300 meters</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>< 100 meters</td>
<td>6</td>
</tr>
<tr>
<td>walking aids required</td>
<td>none</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1 walking stick or crutch</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2 walking sticks or crutches</td>
<td>2</td>
</tr>
</tbody>
</table>

III. Activities of Daily Living

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Finding</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can you put on socks by bending forward?</td>
<td>easily</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>with mild difficulty</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>with moderate difficulty</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>with marked difficulty</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>impossible</td>
<td>2.0</td>
</tr>
<tr>
<td>Can you pick up an object from the floor?</td>
<td>easily</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>with mild difficulty</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>with moderate difficulty</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>with marked difficulty</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>impossible</td>
<td>2.0</td>
</tr>
<tr>
<td>Can you go up and down a standard flight of stairs?</td>
<td>easily</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>with mild difficulty</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>with moderate difficulty</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>with marked difficulty</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>impossible</td>
<td>2.0</td>
</tr>
<tr>
<td>Can you get into and out of a car?</td>
<td>easily</td>
<td>0</td>
</tr>
<tr>
<td>Parameter</td>
<td>Points</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>with mild difficulty</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>with moderate difficulty</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>with marked difficulty</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>impossible</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

index of severity =

= SUM(points for all parameters)

Interpretation:

• minimum points for each section: 0
• maximum points for each section: 8
• minimum index score: 0
• maximum index score: 24

<table>
<thead>
<tr>
<th>Index Score</th>
<th>Handicap</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>1 - 4</td>
<td>mild</td>
</tr>
<tr>
<td>5 - 7</td>
<td>moderate</td>
</tr>
<tr>
<td>8 - 10</td>
<td>severe</td>
</tr>
<tr>
<td>11 - 13</td>
<td>very severe</td>
</tr>
<tr>
<td>>= 14</td>
<td>extremely severe</td>
</tr>
</tbody>
</table>

Modifications to Index

The index was modified in 1991 (Table 2) by the addition of a question for sexual activity in sexually active women being evaluated for hip prosthesis. This was graded as for the activities of daily living. This results in a maximum index score of 26.

The index was modified in 1997 with some minor changes to morning stiffness and termed the “algofunctional index”.

References:

Health Questionnaire

English version for the UK (validated for Ireland)
By placing a tick in one box in each group below, please indicate which statements best describe your own health state today.

Mobility

I have no problems in walking about

I have some problems in walking about

I am confined to bed

Self-Care

I have no problems with self-care

I have some problems washing or dressing myself

I am unable to wash or dress myself

Usual Activities (e.g. work, study, housework, family or leisure activities)

I have no problems with performing my usual activities

I have some problems with performing my usual activities

I am unable to perform my usual activities

Pain/Discomfort

I have no pain or discomfort

I have moderate pain or discomfort

I have extreme pain or discomfort

Anxiety/Depression

I am not anxious or depressed

I am moderately anxious or depressed

I am extremely anxious or depressed
To help people say how good or bad a health state is, we have drawn a scale (rather like a thermometer) on which the best state you can imagine is marked 100 and the worst state you can imagine is marked 0.

We would like you to indicate on this scale how good or bad your own health is today, in your opinion. Please do this by drawing a line from the box below to whichever point on the scale indicates how good or bad your health state is today.
Medical Outcomes Study: 36-Item Short Form Survey Instrument

RAND 36-Item Health Survey 1.0 Questionnaire Items

Unformatted version

1. In general, would you say your health is:
 - Excellent: []
 - Very good: []
 - Good: []
 - Fair: []
 - Poor: []

2. Compared to one year ago, how would you rate your health in general now?
 - Much better now than one year ago: []
 - Somewhat better now than one year ago: []
 - About the same: []
 - Somewhat worse now than one year ago: []
 - Much worse now than one year ago: []

The following items are about activities you might do during a typical day. Does your health now limit you in these activities? If so, how much?

(Circle One Number on Each Line)

<table>
<thead>
<tr>
<th>3. Vigorous activities, such as running, lifting heavy objects, participating in strenuous sports</th>
<th>Yes, Limited a Lot []</th>
<th>Yes, Limited a Little []</th>
<th>No, Not limited at All []</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Moderate activities, such as moving a table, pushing a vacuum cleaner, bowling, or playing golf</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>5. Lifting or carrying groceries</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>6. Climbing several flights of stairs</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>7. Climbing one flight of stairs</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>8. Bending, kneeling, or stooping</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>9. Walking more than a mile</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>10. Walking several blocks</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>11. Walking one block</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>12. Bathing or dressing yourself</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

During the past 4 weeks, have you had any of the following problems with your work or other regular daily activities as a result of your physical health?

(Circle One Number on Each Line)

<table>
<thead>
<tr>
<th>13. Cut down the amount of time you spent on work or other activities</th>
<th>Yes []</th>
<th>No []</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. Accomplished less than you would like</td>
<td>Yes []</td>
<td>No []</td>
</tr>
<tr>
<td>15. Were limited in the kind of work or other activities</td>
<td>Yes []</td>
<td>No []</td>
</tr>
<tr>
<td>16. Had difficulty performing the work or other activities (for example, it took extra effort)</td>
<td>Yes []</td>
<td>No []</td>
</tr>
</tbody>
</table>

During the past 4 weeks, have you had any of the following problems with your work or other regular daily activities as a result of any emotional problems (such as feeling depressed or anxious)?

(Circle One Number on Each Line)
17. Cut down the amount of time you spent on work or other activities
Yes 1 No 2

18. Accomplished less than you would like
Yes 1 No 2

19. Didn’t do work or other activities as carefully as usual
Yes 1 No 2

20. During the last 4 weeks, to what extent has your physical health or emotional problems interfered with your normal social activities with family, friends, neighbors, or groups?
(Circle One Number)

Not at all 1
Slightly 2
Moderately 3
Quite a bit 4
Extremely 5

21. How much bodily pain have you had during the last 4 weeks?
(Circle One Number)

None 1
Very mild 2
Mild 3
Moderate 4
Severe 5
Very severe 6

22. During the last 4 weeks, how much did pain interfere with your normal work (including both work outside the home and housework)?
(Circle One Number)

Not at all 1
A little bit 2
Moderately 3
Quite a bit 4
Extremely 5

These questions are about how you feel and how things have been with you during the last 4 weeks. For each question, please give the one answer that comes closest to the way you have been feeling.

How much of the time during the last 4 weeks . . .
(Circle One Number on Each Line)

<table>
<thead>
<tr>
<th>All of the Time</th>
<th>Most of the Time</th>
<th>A Good Bit of the Time</th>
<th>Some of the Time</th>
<th>A Little of the Time</th>
<th>None of the Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>23. Did you feel full of pep?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>24. Have you been a very nervous person?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>25. Have you felt so down in the dumps that nothing could cheer you up?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>26. Have you felt calm and peaceful?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>27. Did you have a lot of energy?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>28. Have you felt downhearted and blue?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>29. Did you feel worn out?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>30. Have you been a happy person?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>31. Did you feel tired?</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

32. During the last 4 weeks, how much of the time has your physical health or emotional problems interfered with your social activities (like visiting with friends, relatives, etc.)?
(Circle One Number)

All of the time 1
Most of the time 2
Some of the time 3
A little of the time 4
None of the time 5

How TRUE or FALSE is each of the following statements for you.

(Circle One Number on Each Line)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Definitely True</th>
<th>Mostly True</th>
<th>Don't Know</th>
<th>Mostly False</th>
<th>Definitely False</th>
</tr>
</thead>
<tbody>
<tr>
<td>33. I seem to get sick a little easier than other people</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>34. I am as healthy as anybody I know</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>35. I expect my health to get worse</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>36. My health is excellent</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
WOMAC OSTEOARTHRITIS INDEX VERSION LK3.0

INSTRUCTIONS TO PATIENTS

In Sections A, B and C questions will be asked in the following format and you should give your answers by putting an "X" in one of the boxes.

NOTE:

1. If you put your "X" in the left-hand box, i.e.
 None Mild Moderate Severe Extreme
 ☒ ☐ ☐ ☐ ☐
 then you are indicating that you have no pain.

2. If you put your "X" in the right-hand box, i.e.
 None Mild Moderate Severe Extreme
 ☐ ☐ ☐ ☒ ☒
 then you are indicating that your pain is extreme.

3. Please note:
 a) that the further to the right you place your "X" the more pain you are experiencing.
 b) that the further to the left you place your "X" the less pain you are experiencing.
 c) please do not place your "X" outside the box.

You will be asked to indicate on this type of scale the amount of pain, stiffness or disability you have experienced in the last 48 hours.

Remember the further you place your "X" to the right, the more pain, stiffness or disability you are indicating that you experienced. Finally, please note that you are to complete the questionnaire with respect to your study joint(s). You should think about your study joint(s) when answering the questionnaire, i.e., you should indicate the severity of your pain, stiffness and physical disability that you feel is caused by arthritis in your study joint(s). Your study joint(s) has been identified for you by your health care professional. If you are unsure which joint(s) is your study joint, please ask before completing the questionnaire.
Section A

INSTRUCTIONS TO PATIENTS

The following questions concern the amount of pain you have experienced due to arthritis in your study joint(s). For each situation please enter the amount of pain experienced in the last 48 hours. (Please mark your answers with an "X".)

QUESTION: How much pain do you have?

1. Walking on a flat surface.
 - None □
 - Mild □
 - Moderate □
 - Severe □
 - Extreme □

2. Going up or down stairs.
 - None □
 - Mild □
 - Moderate □
 - Severe □
 - Extreme □

3. At night while in bed.
 - None □
 - Mild □
 - Moderate □
 - Severe □
 - Extreme □

4. Sitting or lying.
 - None □
 - Mild □
 - Moderate □
 - Severe □
 - Extreme □

5. Standing upright.
 - None □
 - Mild □
 - Moderate □
 - Severe □
 - Extreme □

Section B

INSTRUCTIONS TO PATIENTS

The following questions concern the amount of joint stiffness (not pain) you have experienced in the last 48 hours in your study joint(s). Stiffness is a sensation of restriction or slowness in the ease with which you move your joints. (Please mark your answers with an "X".)

6. How severe is your stiffness after first waking in the morning?
 - None □
 - Mild □
 - Moderate □
 - Severe □
 - Extreme □

7. How severe is your stiffness after sitting, lying or resting later in the day?
 - None □
 - Mild □
 - Moderate □
 - Severe □
 - Extreme □
Section C

INSTRUCTIONS TO PATIENTS

The following questions concern your physical function. By this we mean your ability to move around and to look after yourself. For each of the following activities, please indicate the degree of difficulty you have experienced in the last 48 hours due to arthritis in your study joint(s). (Please mark your answers with an “X”)

QUESTION: What degree of difficulty do you have?

8. Descending stairs.
 - None
 - Mild
 - Moderate
 - Severe
 - Extreme

 - None
 - Mild
 - Moderate
 - Severe
 - Extreme

10. Rising from sitting.
 - None
 - Mild
 - Moderate
 - Severe
 - Extreme

11. Standing.
 - None
 - Mild
 - Moderate
 - Severe
 - Extreme

12. Bending to floor.
 - None
 - Mild
 - Moderate
 - Severe
 - Extreme

13. Walking on flat.
 - None
 - Mild
 - Moderate
 - Severe
 - Extreme

 - None
 - Mild
 - Moderate
 - Severe
 - Extreme

15. Going shopping.
 - None
 - Mild
 - Moderate
 - Severe
 - Extreme
16. Putting on socks/stockings.
 None Mild Moderate Severe Extreme

17. Rising from bed.
 None Mild Moderate Severe Extreme

18. Taking off socks/stockings.
 None Mild Moderate Severe Extreme

19. Lying in bed.
 None Mild Moderate Severe Extreme

20. Getting in/out of bath.
 None Mild Moderate Severe Extreme

 None Mild Moderate Severe Extreme

22. Getting on/off toilet.
 None Mild Moderate Severe Extreme

23. Heavy domestic duties.
 None Mild Moderate Severe Extreme

 None Mild Moderate Severe Extreme

THANK YOU FOR COMPLETING THE QUESTIONNAIRE